
VAMPIRTRACE
ABOUT MANUAL INSTRUMENTATION

DKRZ Tutorial 2012 in Hamburg

June, 2012

Ronny Tschüter

Slides by: Andreas Knüpfer, Jens Doleschal,

ZIH, Technische Universität Dresden

2

Source Code Instrumentation

• Instrumentation: Process of modifying programs to
detect and report events

• There are various ways of instrumentation:
– Manually

• Large effort, error prone

• Difficult to manage
– Automatically

• Via source to source translation

• Via compiler instrumentation

• Program Database Toolkit (PDT)

• OpenMP Pragma And Region Instrumenter (Opari)

3

Source Code Instrumentation

manually or automatically

int foo(void* arg) {

enter(7);

if (cond) {

 leave(7);

 return 1;

}

leave(7);

return 0;

}

int foo(void* arg) {

if (cond) {

 return 1;

}

return 0;

}

4

Source Code Instrumentation

• Wrapper option -vt:inst <insttype> specifies the
instrumentation type to be used
– compinst

Fully-automatic instrumentation by the compiler

– manual
Manual instrumentation by using VampirTrace’s API
(needs source-code modifications)

– tauinst
Fully-automatic instrumentation by the tau_instrumentator

– dyninst
Binary-instrumentation with Dyninst

5

Using the VampirTrace API

• The VT_USER_START, VT_USER_END calls can be used
to instrument any user-defined sequence of statements

• If a block has several exit points, all exit points have to
be instrumented with VT_USER_END

#include "vt_user.inc“

VT_USER_START(’name’)

...

VT_USER_END(’name’)

#include "vt_user.h“

VT_USER_START("name");

...

VT_USER_END("name");

Fortran: C:

6

Using the VampirTrace API

• For C++: only entry points into a scope need to be
marked

#include "vt_user.h“

{

VT_TRACER("name");

...

}

C++:

7

Using the VampirTrace API

• Instrumented sources have to be compiled with
-DVTRACE

– combined with automatic compiler instrumentation:

– without compiler instrumentation:

• Note:
The option -vt:inst manual can be used with non-
instrumented sources. Binaries created in this manner
only contain MPI and OpenMP instrumentation, which
might be desirable in some cases.

% vtcc -DVTRACE hello.c -o hello

% vtcc -vt:inst manual -DVTRACE hello.c -o hello

On Blizzard use following flags for Fortran:

-WF,-DVTRACE -I$(VT_INC)

8

Measurement Controls

• Switching tracing on/off
– Use the VT_ON/ VT_OFF instrumentation calls to start and stop

the recording of events

– To check whether if tracing is enabled or not use the call
VT_IS_ON

int main()

{

 ...

VT_OFF();

initialize();

VT_ON();

compute();

 ...

}

9

Measurement Controls

• Trace buffer rewind
– Useful when the program should decide dynamically after a

specific code section (i.e. a time step or iteration) if this section
has been interesting (i.e. anomalous/slow behavior) and should
be recorded to the trace file

– Use the instrumentation call VT_SET_REWIND_MARK at the
beginning of a (possibly not interesting) code section

– Later, you can decide to rewind the trace buffer to the mark with
the call VT_REWIND

do step=1,number_of_time_steps

 VT_SET_REWIND_MARK()

 call compute_time_step(step)

 if(finished_as_expected) VT_REWIND()

end do

10

Measurement Controls

• Intermediate buffer flush
– In addition to an automated buffer flush when the buffer is filled,

it is possible to flush the buffer at any point of the application.
This way you can guarantee that after a manual buffer flush
there will be a sequence of the program with no automatic buffer
flush interrupting. To flush the buffer you can use the call
VT_BUFFER_FLUSH.

11

Measurement Controls

• Note:
– Compile with –DVTRACE

– If the sources contains further VampirTrace API calls and only
the calls for measurement controls shall be disabled, then the
sources have to be compiled with -DVTRACE_NO_CONTROL.

