
Basic Profiling Tools and Hardware
Counter Usage

Get started with some standard tools on blizzard

Hendryk Bockelmann, DKRZ



Access to performance analysis tools

I standard profiling available (like -p and -pg compiler flags)

I source /usr/lpp/ppe.hpct/env_sh for IBM tools
(libmpitrace and HPM) to set IHPCT_BASE and paths

I use modules for vampirtrace, scalasca and vampir(server)

module environment:

I module av: shows all modules available

I module add/rm: adds, removes modules

I on blizzard use: scalasca/1.4.2rc3-aixpoe-ibm,
vampirtrace/5.13rc1-aixpoe-ibm (latest versions), maybe
go back to stable versions ...

I on lizard use: vampir/vampirclient-7.5.0

2/33
Hendryk Bockelmann, DKRZ



Sequential profiling with prof

I displays object file profile data

I for each text symbol in object file the percentage of execution
time, number of times that function was called, and the
average number of milliseconds per call is shown

I easy to use: compile and link with additional -p option, run
your program as usual

I produce profiling information:

prof ./foo.x -m mon.out > foo.mon.rpt

I output is flat profile of called functions, even MPI calls are
profiled at lowest level (ie. _lapi_*)

3/33
Hendryk Bockelmann, DKRZ



Seq profiling with prof (example)

4/33
Hendryk Bockelmann, DKRZ



Sequential profiling with gprof

I in addition to prof, gprof shows the call-graph data and not
only flat profiles

I easy to use, available on most systems: compile and link with
additional -pg option, run your program as usual

I produce profiling information:

gprof ./foo.x gmon.out > foo.gmon.rpt

I drawback: profiling support is added by the compiler, so if you
wish to obtain profiling information from any shared libraries,
you need to also compile them with -pg (therefore MPI calls
_lapi_* appear spontanously)

5/33
Hendryk Bockelmann, DKRZ



Seq profiling with gprof (example)

6/33
Hendryk Bockelmann, DKRZ



Use xprofiler for gmon.out

7/33
Hendryk Bockelmann, DKRZ



Processor usage report with tprof

I tprof charges processor time to object files, processes, threads,
subroutines (user mode, kernel mode and shared library) - using
AIX trace utility started in background

I advantage: subroutine-level profiling without modifying
executable programs (no recompile, relink needed)

I modify batch script:

trcstop 2>/dev/null

tprof -usz -p <binary> -x poe /path/to/binary

I profiles all processes on system (use node not_shared)

I output of tprof is very flat, but shows all needed information

I only one node will be profiled (the one on which poe is started!)

8/33
Hendryk Bockelmann, DKRZ



System profiling with tprof (example)

9/33
Hendryk Bockelmann, DKRZ



System profiling with tprof (example)

10/33
Hendryk Bockelmann, DKRZ



System profiling with tprof (example)

11/33
Hendryk Bockelmann, DKRZ



Summary of *prof

src change, output given:

I gprof: standard, supported profiling tool on many UNIX
systems - no need to learn new stuff

I tprof: collects data with no impact on execution time, works on
optimized binaries without any need for recompilation - prof,
gprof might have overhead, might not work on optimized
binary, need recompile, relink

I prof, gprof: provide subprogram profiling, exact counts of
number of times every subprogram is called - tprof does not

I gprof: provides call graph - prof, tprof do not

12/33
Hendryk Bockelmann, DKRZ



Summary of *prof

what data is given:

I all *prof obtain processor consumption estimates for each
subprogram by sampling program counter of user program

I tprof collects processor usage information for whole system -
prof, gprof get profiling information for single program & time
in user mode

treatment of MPI data:

I all *prof tools give flat information on CPU-time used

I all MPI-stuff is hidden, each process gives its own profile (no
correlations can be drawn)

→ MPI profiling needed

13/33
Hendryk Bockelmann, DKRZ



MPI profiling

What we know by now:

I time spent in user subroutines

I time spent in MPI-lib

What we do not know by now:

I which MPI routines take the time

I correlations between MPI-tasks (send/receive/wait)

→ tools are needed (this is why you are here)

I libmpitrace

I scalasca

I vampir(trace)

14/33
Hendryk Bockelmann, DKRZ



HPCTlib: libmpitrace

I calls to MPI routines are intercepted by library functions

I MPI profile data of MPI routines can be collected during a
programs execution

I on MPI_Finalize, data is gathered and profile data is written

I compile your application with -g to enable mapping of
performance information back to the application source

I link your application with
-L/usr/lpp/ppe.hpct/lib64 -lmpitrace

I profile data written to mpi_profile.<rank> and XML file
mpi_profile_<rank>.viz for visualization

15/33
Hendryk Bockelmann, DKRZ



libmpitrace: profile
I default: data only for rank 0 and min, max, avg rank - set

envVar OUTPUT_ALL_RANKS=yes for more

I mpi_profile.<rank> are human readable

16/33
Hendryk Bockelmann, DKRZ



libmpitrace: profile

view mpi_profile_<rank>.viz files with peekperf

17/33
Hendryk Bockelmann, DKRZ



libmpitrace: customization

I OUTPUT_ALL_RANKS=[yes|no]: show all results

I TRACE_ALL_EVENTS=[yes|no]: do tracing or profiling

I MAX_TRACE_RANK=#: maximum of traced ranks

I TRACEBACK_LEVEL=#: useful for nested MPI-calls within other
functions/libraries

I manual tracing for selected portion of the program through API

I profiling data cannot be controlled by the API - always
collected throughout the entire execution of the program

→ single_trace_0 outputfile contains tracing information from
MPI ranks for which tracing was enabled

18/33
Hendryk Bockelmann, DKRZ



libmpitrace: trace

view single_trace_0 file with peekview

19/33
Hendryk Bockelmann, DKRZ



Summary on basic tools

We have profiles of user subroutines and MPI calls by at least 2
different tools - one would be better
Additionally, the visualization could be better ...

20/33
Hendryk Bockelmann, DKRZ



If CPU time is not enough ...

Knowing hotspots of the application is only the beginning:

I why does some routine take so much time?

I why does MPI take so much time?

Answers: not trivial but often related to one of these issues

I parallelization aspects (imbalance, race-conditions, etc.)
→ covered by scalasca and vampir

I no suitable hardware usage (e.g. cache utilization)

21/33
Hendryk Bockelmann, DKRZ



If CPU time is not enough ...

... getting hardware counter data from IBM HPC Toolkit:
i/ hpccount command provides

I execution wall clock time

I resource utilization statistics

I hardware performance counters information

I derived hardware metrics

for the whole application run:
poe hpccount -u -n -o <name> <prog>

22/33
Hendryk Bockelmann, DKRZ



hpccount options

-g specifies the hardware counter group

-n suppresses output to stdout

-o writes output to file <name>

-u unique file names will be used

HPM_ASC_OUTPUT, HPM_VIZ_OUTPUT for ASCII or XML output
HPM_AGGREGATE:

I mirror.so: gets raw data from each MPI-task [default]

I average.so: counter groups distributed in round robin fashion!
Aggregator takes avg over these subgroups

23/33
Hendryk Bockelmann, DKRZ



hpccount example

24/33
Hendryk Bockelmann, DKRZ



If CPU time is not enough ...

... getting hardware counter data from IBM HPC Toolkit:
ii/ instrumentation with libhpm
#include <libhpc.h>

int main(void) {

...

MPI_Init(MPI_COMM_WORLD);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

hpmInit(myrank, "my_program");

... maybe some initialization code

hpmStart(1, "first section");

... some code you want to analyze

hpmStop(1);

... more boring code

hpmTerminate(myrank);

MPI_Finalize();

}

PROGRAM HELLO_WORLD

IMPLICIT NONE

#include "f_hpc.h"

...

CALL MPI_INIT(ierror)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierror)

CALL f_hpminit(myrank, ’my_program’)

... maybe some initialization code

CALL f_hpmstart(1, ’first section’)

... some code you want to analyze

CALL f_hpmstop(1)

... more boring code

CALL f_hpmterminate(myrank)

CALL MPI_FINALIZE(ierror)

END

don’t forget -I/usr/lpp/ppe.hpct/include and
-L/usr/lpp/ppe.hpct/lib64 -lhpc -lpmapi

25/33
Hendryk Bockelmann, DKRZ



Choosing counters

on POWER6

I you can measure 6 counters simultaneously

I not all combinations allowed

I 202 performance counter groups (pmlist -g -1)

I may need to sample multiple times for completeness

I or use multiplexing of counter groups

Use hpccount/libhpc to measure code efficiency by means of:

I Instructions per run cycle, Mflop/s (group 127)

I L1 cache usage (group 47)

I cache/memory access (group 7,11)

26/33
Hendryk Bockelmann, DKRZ



HPM counter analysis

counters are difficult to understand

I limited documentation

I experience needed to see counter value indicating a problem

I use IPC (instructions per run cycle) for first estimate

IPC = PM_RUN_INST_CMPL / PM_RUN_CYC = 1/CPI

category IPC description

1 < 0.4 Houston, we have a problem
2 0.4 . . . 0.7 not tuned for POWER6
3 0.7 . . . 0.9 acceptable
4 0.9 . . . 1.3 very good (can be tough to get here)
5 > 1.3 wow ! (not always possible)
6 > 2.0 LINPACK, VMASS, ESSL, FFTW, ...

27/33
Hendryk Bockelmann, DKRZ



HPM counter analysis

group 127:

I PM_FPU_1FLOP: FPU executed single FLOP operation

I PM_FPU_FMA: FPU executed a multiply-add

I PM_FPU_FSQRT_FDIV

I PM_FPU_FLOP: 1flop, fma, sqrt, div operations for unit0 and 1

group 47:

I PM_ST_REF_L1: L1 D cache store references

I PM_LD_REF_L1: L1 D cache load references

I PM_ST_MISS_L1: L1 D cache store misses

I PM_LD_MISS_L1: L1 D cache load misses

28/33
Hendryk Bockelmann, DKRZ



HPM counter analysis

group 7:

I PM_DATA_FROM_L2: D Cache
reloaded from local L2

I PM_DATA_FROM_L21: D Cache
reloaded from private L2 of
other core on chip

I PM_DATA_FROM_L2MISS: D
Cache reloaded but not from
local L2

I PM_DATA_FROM_L3MISS: D
Cache reloaded from beyond
L3

29/33
Hendryk Bockelmann, DKRZ



HPM counter analysis

group 11:

I PM_DATA_FROM_LMEM: D Cache
reloaded from local memory
(attached to DCM)

I PM_DATA_FROM_RMEM: D Cache
reloaded from remote memory
(attached to other DCM on
same MCM)

I PM_DATA_FROM_DMEM: D Cache
reloaded from distant memory
(attached to a different MCM)

30/33
Hendryk Bockelmann, DKRZ



HPCC results out of the box

i/ HPL: solves a dense linear system in double precision (linpack)
N = 20000,NB = 20 ∨ 120,P = 8,Q = 4

libhpc: per MPI task
NB HPL Gflop/s IPC Gflop/s % peak L1 cache hit rate

20 2.39e+02 1.45 - 1.72 7.33 - 7.56 39.9 - 41.1 % 97.5 - 99.5 %
120 3.15e+02 1.82 - 2.09 9.75 - 9.8 52.3 - 56.0 % 98.5 - 99.4 %

libhpc: per MPI task
NB PM_DATA_FROM_L2 PM_DATA_FROM_L2MISS PM_DATA_FROM_LMEM

20 35131005 - 70195962 8913581 - 12180711 5921680 - 9110732
120 30105907 - 65539464 4992461 - 6045666 3332966 - 4227469

31/33
Hendryk Bockelmann, DKRZ



POWER6 background

POWER6 cache/memory: size
and latency

I L1: 64 kB, 2 cycles

I L2: 4 MB core-private,
25 cycles

I L3: 32 MB chip-shared,
150 cycles

I mem: 50 (100) GB, 500
cycles

32/33
Hendryk Bockelmann, DKRZ



HPCC results out of the box

ii/ DGEMM: measures floating point rate of double precision real
matrix-matrix multiplication
bench N = 1500 using libessl or not

libhpc: per MPI task
essl HPL Gflop/s (min/max) IPC Gflop/s

no 2.94 / 3.31 0.65 - 0.68 3.4 - 3.6
yes 10.84 / 15.36 2.49 - 2.59 14.2 - 14.8

libhpc: per MPI task
essl % peak PM_ST_MISS_L1 PM_LD_MISS_L1

no 18.5 - 19.6 % 1.23e6 - 1.47e6 215.68e6 - 221.91e6
yes 77.3 - 80.6 % 2.71e6 - 3.32e6 0.93e6 - 1.99e6

33/33
Hendryk Bockelmann, DKRZ


	Introduction
	Sequential and MPI profiling
	hardware performance counter

