

Von Anschauung und Meßdaten zur mathematischen Modellierung - Beispiel Glaziologie

20 March 2012 Angelika Humbert Universität Hamburg

Ice sheets - Antarctica

© USGS

The system

Ice sheets – Antarctica

after Rignot, 2006

Ice sheets - Antarctica

The nature of ice

solid fluid tertiancreeR shear angle γ elastic time ASTER

Deformation of polycrystalline ice

Physics of polycrystalline ice

The system

Stresses along a cross section of ice sheet 2 ice front

υH

Stresses along a cross section of ice sheet 2 ice front

Horizontal velocity profiles

Observation versus experiment

observation

fracture mechanical experiment

Observation versus experiment

observation

fracture mechanical experiment

Observational Methods

Shallow cores – accumulation rates

Deep cores – climate history

Deep cores – climate history

Observational Methods

© D. Steinhage, AWI Polar 5

> TX antenna (ice thickness radar)

RX antenna (ice thickness radar)

Universität Hamburg

Data coverage – radio echo sounding

UH

DER FORSCHUNG I DER LEHRE I DER BILDUNG

Observational Methods

Seismics

Universität Hamburg

Observational Methods

Altimeters – satellite based

Altimeters – satellite based

Surface elevation

Changes in the last decade

Data coverage – satellite altimetry

UH

Pritchard et al., 2009

Observational Methods

Data coverage – mass change

Horwath & Dietrich, 2009

Observational Methods

GPS observations of horizontal and vertical position

GPS observations of horizontal and vertical position

Observational Methods

Flow velocities from remote sensing – feature tracking

calculate the correlation-index between the reference chip and the search-area chip select the chip with the largest correlation

Flow velocities from remote sensing – speckle tracking

Flow velocities from remote sensing – interferometry

Flow velocities from remote sensing – interferometry

Data coverage – surface velocities

© NASA/JPL-Caltech/UCI

Pine Island Rift

Pine Island Rift

Pine Island Rift

Data coverage – surface velocities

© NASA/JPL-Caltech/UCI

Horizontal velocities

Horizontal velocities

Wet base

UH

KlimaCampus

Subglacial lakes

after Siegert et al., 2005

The hydrological system

Observational Methods

Observational Methods

Physics of polycrystalline ice

Balance equations:

- Mass balance
- Momentum balance
- Energy balance (kin+internal)

Constitutive equations

 Incompressible non-Newtonian fluid - Glen's flow law

$$D = EA(T, W)f(\sigma) t^{D}$$
, with $f(\sigma) = \sigma^{n-1}$, $n = 3$

empirical, Glen / Steinemann 1955/58

Balance equation of

Mass (incompressible) $\nabla u = 0$ Momentum $\nabla \sigma = \rho_{ice} g$ Energy $\rho c_p \frac{dT}{dt} = \nabla \cdot (k \nabla T) + 4 \mu d_e^2$

Constitutive equation $\mu(T, p, a)$

$$\mu(T, p, d_e) = \frac{1}{2} [EA(T, p)]^{-1/n} d_e^{(1-n)/n}$$

with
$$\sigma = t^D - pI$$
 $D = \frac{1}{2}(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})$
 $t^D = 2\mu D$ $d_e = \sqrt{\frac{1}{2} \text{tr} D^2}$

Boundary conditions

$$\frac{\partial b}{\partial t} + v_x \frac{\partial b}{\partial x} + v_y \frac{\partial b}{\partial y} - v_z = N_{\rm b} a_{\rm b}^{\perp}$$
$$\frac{\partial h}{\partial t} + v_x \frac{\partial h}{\partial x} + v_y \frac{\partial h}{\partial y} - v_z = N_{\rm s} a_{\rm s}^{\perp}$$
$$\frac{\partial H}{\partial t} = -\operatorname{div} \mathbf{Q} + a_{\rm s} - a_{\rm b}$$

Sprachebenen

