Carsten Ehbrecht¹, Stephan Kindermann¹, Ag Stephens², Sébastien Denvil³

Copernicus opernicus • Copernicus is the European Union's earth observation programme • Data from multiple sources: earth observation, satellites and in situ sensors • Thematic areas: land, marine, atmosphere, climate change, emergency management, security • Users: policymakers and public authorities **Copernicus Climate Change Service** Climate Change Service . . 1ANAGEMEN ENERGY COASTAL AREAS REDUCTION **Architecture of Compute Node** • Information for **monitoring and predicting climate change** • Helps to support adaptation and mitigation • Access to Global Climate Model projections using wellestablished metrics and manipulation tools and receive outputs tailored to specfic sector needs • Products for coastal, water, insurance and energy sectors **Climate Data Store (CDS)** CALCULATION DATA DATA • A climate data store will contain the geophysical information needed to analyse the climate change indicators in a consistent and harmonised way. • This will combine the functions of a **distributed data centre** with a set of services and facilities for users and content developers. • The store will provide data resources and computing facilities that can be utilised, for example, to develop improved climate reanalyses and seasonal forecasts. References [1] Copernicus Climate Change Service, http://climate.copernicus.eu/ [2] Birdhouse, http://bird-house.github.io/ [3] ESGF, https://esgf.llnl.gov/ [4] CP4CDS on GitHub, https://github.com/cp4cds [5] C3S MAGIC, https://github.com/c3s-magic

Web Processing Services for Copernicus Climate Change Service

German Climate Compute Centre (DKRZ)¹, Centre for Environmental Data Analysis (CEDA)², Institut Pierre Simon Laplace (IPSL)³

Climate Projections for the Climate Data Store (CP4CDS)

WPS Clients Portal Command Line Tool HTTF Submit WPS Job Poll Status, Get Outputs Secured Access (X509 Certificate and NGINX OAuth Token) HTTP Server Supervisor Start/Stop Services HTTP File-WSGI service Gunicorn Storage Write Update Outputs, Job Status Database Queue Docs Job Outputs PWPS Queue Status Docs Read/Write Delegate Job WPS Processes Data Archive Execution (CMIP5, Obs) Compute (Slurm, C3S Magic Cluster Read-only Grid Engine)

CP4CDS Overview

- ECMWF, UK
- data node
- (WPS) standard interface
- tions
- checked

Service Interfaces exposed to Climate Data Store (CDS)

Federated CP4CDS Nodes

- Using **load-balancing across sites** / failover strategy
- All 3 sites of the **same replicated local data pool**
- deployment (SDDS)

Software Components of WPS Service

- plication
- node

- service
- t_{1CS}
- compute-cluster for scalability

Status

- A Copernicus WPS demo service is available on GitHub (CP4CDS repo)
- The new version of ESMValTool 2.x is used in CP4CDS via Conda package
- A PyWPS scheduler extension for Slurm and Grid-Engine was developed
- A security proxy for WPS services is available using X509 certificates and simple tokens
- A quality checked CMIP5 data store is available at CEDA and partly replicated to other sites

• Providing the required data and services for global climate projections to the Climate Data Store (CDS) of the Climate Change Service (C3S) portal hosted at

• Data Node - Consisting of vanilla Earth System Grid Federation (ESGF) index and

• Compute Node - Providing compute facilities using the Web Processing Service

• Processing Backend - External software toolbox to analyse climate model projec-

• Climate Model Projections (CMIP5, CORDEX) in filesystem cache • Quality Control - Climate Model Projections are selected for C3S and quality

• Replication - Using **Synda** Python library for managing data movement

• Web Processing Service (WPS) - standard interface for processing • OpenDAP - remote data access interface for NetCDF files • ESG Search - adapted Solr search interface by ESGF for data discovery

• Geographically distributed and highly available set of data and compute services • Federated between the leading European institutes: CEDA, IPSL and DKRZ

• All 3 sites have the same (exact version) software stack using a common software

• **CEDA hosts the main node**, IPSL and DKRZ take over service when needed

• A WPS request (HTTP GET/POST) comes from a WPS client. • The Nginx/Gunicorn combination delegates the request to the PyWPS WSGI ap-

• Gunicorn - spawns several workers to use the available CPUs on a single compute

• **PyWPS** - Python implementation of OGC Web Processing Standard • Supervisor - used to start/stop and monitor services • Processing outputs and status documents are web accessible by the Nginx file-

• Access control (X509 Certificate and OAuth token) for WPS service

• WPS Processes are defined for project analysis toolbox, like C3S MAGIC diagnos-

• Processing Backend has read-only access to the climate data pool on file-system with CMIP5 climate model projections and observational data.

• Using PyWPS scheduler extension (Slurm, GridEngine) to run process on a

- C3S MAGIC data manipulation and analysis package
- Developed by KNMI, eScience Center, DLR and others
- Used by CP4CDS as **Processing Backend** for CMIP5 climate model projections
- To calculate standardized characteristics from available climate model output
- **ESMValTool** To develop and deliver an enhanced version of the ESMValTool software
- Multi-model products To combine the climate information generated by various climate models into a single estimate of any future climate signal • Tailored products - To assure that specific needs of envisaged end users in the selected economic sectors are facilitated by the soft-
- ware

SDDS - Deployment Solution

- **SDDS** Software Deployment and Dependency Solution
- To manage and deploy codes from external projects, such as C3S MAGIC / ESMValTool, into the CP4CDS Compute Node
- Consists of a software environment and application, managed through a GitHub repository, which includes a basic template of a working WPS service (PyWPS)
- **Conda** Used to record the software dependencies
- **Docker** Used to provide the Compute Node through containers • **Ansible** - Ansible and Buildout is used to setup a WPS (PyWPS) • Used by **PAVICS** (Climate service institute Ouranos, Canada): https://ouranosinc.github.io/pavics-sdi/

Next Steps

- Further integration of MAGIC codes
 - Roll-out of CP4CDS at all three sites
 - by Ansible, deployment in Docker Cluster
 - Improved SDDS using a template generator, replacing Buildout
 - Using ESGF OAuth service for security tokens

C3S MAGIC - Climate Data Analysis

• Metrics - computes and displays a wide set of performance metrics and diagnostics