Yet Another Coupler – YAC
Version 2.4.2 – Jan 2022

Contact: Moritz Hanke (DKRZ)
René Redler (MPI-M)
YAC – Team

YAC2 – a rewrite of YAC1

Moritz Hanke (DKRZ)

with contributions from

Sergey Kosukhin (MPI-M)
René Redler (MPI-M)

GUI:

Teresa Holfeld (MPI-M, student assistant)
Maxim Yastremsky (MPI-M, student assistant)
A coupling software **not only** for ICON

- Parallel weight computation on (almost) arbitrary grids on the sphere
- Parallel interpolation
- Parallel data exchange

- Library
- BSD License
- Programming Language C
- Fortran and C user API
- Programming based on standards (C, MPI, XML, NetCDF)
- Git repository
- Autotools
- Valgrind testing
- Unit tests (>95% of lines covered)
- Fortran and C examples plus toy models
- XML coupling configuration file with GUI support
YAC – General remarks
YAC – General remarks

weight computation
interpolation
configuration
communication
data exchange
YAC – Search

required

• Geographical positions (λ, φ) of vertices and points

provided

• Initial scalable computation of global mapping
• completely parallelised initialisation and interpolation weight computation with support

features

• Support for circles of latitude/longitude and great circles
• Convex & moderately concave polygons
• Support for masked cells and points
Available 2-dimensional (horizontal) interpolation methods

- Conservative remapping (**conserv**)
 - 1\(^{st}\) – order
 - 2\(^{nd}\) – order
- Hybrid cubic spherical Bernstein-Bézier patch interpolation (**bernstein_bezier**)
- N-nearest-neighbour (**n-nearest_neighbour**)
 - Distance-weighted
 - N-nearest-neighbour average
 - Gauss-weighted N-nearest-neighbour
- Source Point to Target Point Mapping (**source_to_target_map**)
- Fixed value (**fixed**)
Available 2-dimensional (horizontal) interpolation methods (continued)

- Radial Basis Functions (**radial_basis_function**)
- Cell average (**average**)
 - simple
 - distance-weighted cell average
- Interpolation from precomputed NetCDF weight file (**user_file**)

example

interpolation of 1° x 1° World Ocean Atlas 2009 sea surface salinity onto an ICON R2B04 atmosphere grid.

1st-order conservative remapping

plus Hybrid cubic spherical Bernstein-Bézier interpolation

plus fixed value
Step 1: 1st-order conservative remapping
YAC – Interpolation stack

Step 1: … + Hybrid cubic spherical Bernstein-Bézier interpolation
YAC – Interpolation stack

Step 1: \[\ldots \ + \ldots \ + \text{fixed value} \]
YAC – Graphical User Interface

The image shows a graphical user interface for a coupling module, specifically labeled as "Coupling GUI." The interface is divided into two main sections: "Transients" for atmospheric (atmo) and oceanic (ocean) components.

Transients
- **total_heat_flux**
 - Grid: grid1
 - collect. size: 4

- **atmosphere_sea_ice_bundle**
 - Grid: grid1
 - collect. size: 4

- **sea_surface_temperature**
 - Grid: grid1
 - collect. size: 1

- **eastward_sea_water_velocity**
 - Grid: grid1
 - collect. size: 1

- **northward_sea_water_velocity**
 - Grid: grid1

Basic settings
- **Calendar:** proleptic-georgorian
- **Start date:** 1800-01-01T00:00:00.000
- **End date:** 2100-01-01T00:00:00.000
- **Timestep unit:** second
- **Stdout redirect**
- **Root redirect**
YAC – Fortran Interface

Initialisation Phase
- yac_finit
- yac_fdef_comp
- yac_fdef_datetime

Grid Definition
- yac_fdef_grid
- yac_fdef_points
- yac_fset_global_index
- yac_fset_core_mask
- yac_fdef_mask
- yac_fdef_field_mask
- yac_fdef_field

Search – End of Definition
- yac_fsearch

Data exchange
- yac_fget
- yac_fput

Termination
- yac_ff finalize
YAC – Initialisation phase

component initialisation

CALL yac_finit ("coupling.xml", "coupling.xsd")
• will call MPI_INIT if not been called already

CALL yac_fdef_comp ("component_name", component_id)
• local operations for initialising of YAC-internal data structures
• needs to be called by all processes

CALL yac_fdef_datetime (start_datetime = start_of_run_in_iso_format,
end_datetime = end_of_run_in_iso_format)
• overwrites start and end date set in coupling.xml
• if required it has to be called before calling yac_fdef_field
• time management inside yac using mtime
YAC – Definition Phase

grid definition (*example for an unstructured grid*)

CALL yac_fdef_grid ("grid_name",
nbr_of_horizontal_vertices,
nbr_of_horizontal_cells,
nbr_vertices_per_cell,
array_of_vertex_longitudes,
array_of_vertex_latitudes,
connectivity,
grid_id)

overloaded with respect to
- data type for coordinate arrays
- grid types
YAC – Definition Phase

grid definition (*example for an unstructured grid*)

CALL yac_fdef_points (grid_id, patch_horz%n_patch_cells, YAC_LOCATION_CELL, array_of_cellcenter_longitudes, array_of_cellcenter_latitudes, cell_point_ids)

overloaded with respect to
- data type for coordinate arrays
- grid types
CALL yac_fset_global_index (array_of_global_indices, YAC_LOCATION_CELL, grid_id)
CALL yac_fset_core_mask (core_mask_array, YAC_LOCATION_CELL, grid_id)
YAC – Definition Phase

mask definition

CALL yac_fdef_mask (mask_array, point_id)

overloaded with respect to data type (Integer or Logical) of mask array

mask_array
 1 (.TRUE.) for valid data
 0 (.FALSE.) for invalid data
YAC – Definition Phase

mask definition

CALL yac_fdef_field_mask ("field_name",
comp_id,
point_id,
mask_id,
nbr_point_sets,
field_id)
CALL yac_fdef_field ("field_name",
component_id,
grid_id,
array_of_cell_point_ids,
nbr_point_sets,
point_id)
CALL yac_fsearch (error_status)

- includes collective MPI operations
- needs to be called by all processes
- accesses the coupling configuration
- invokes the neighbourhood search
- does the communicator splitting
YAC – Exchange Phase

data exchange

as it is implemented in ICON

Atmosphere

Ocean

Max-Planck-Institut für Meteorologie

DKRZ
YAC – Exchange Phase

data exchange

CALL yac_fput (field_id,
 nbr_horizontal_points,
 collection_size,
 send_field,
 info,
 error_flag)

- to be called at every time step
- at the “source timestep” interval specified in the xml file
- accumulation/averaging done inside yac_fput
YAC – Exchange Phase

Data exchange as it is implemented in ICON

! field_id(6) : Temperature

DO i_blk = 1, patch_horz%nblksc
 nn = (i_blk-1)*nproma
 DO n = 1, nproma
 buffer(nn+n,1) = &
 ocean_state%p_prog(nold(1))%tracer(n,1,i_blk,1) + tmelt
 ENDDO
ENDDO

CALL yac_fput (field_id(6), nbr_hor_points, 1, &
 buffer(1:nbr_hor_points,1), &
 info, ierror)
YAC – Exchange Phase

data exchange

CALL yac_fget (field_id,
collection_size,
recv_field,
info,
error_flag)

• to be called at every time step
• at the “source timestep” interval specified in the xml file
• accumulation/averaging done inside yac_fput
YAC – Exchange Phase

data exchange as it is implemented in ICON

CALL yac_fget (field_id(1), nbr_hor_points, 2, &
 & buffer(1:nbr_hor_points,1:2), &
 & info, ierror)

IF (info > 0 .AND. info < 7) THEN
 DO i_blk = 1, patch_horz%nblks_c
 nn = (i_blk-1)*nproma
 DO n = 1, nproma
 atmos_fluxes%stress_xw(n,i_blk) = buffer(nn+n,1)
 atmos_fluxes%stress_x(n,i_blk) = buffer(nn+n,2)
 ENDDO
 ENDDO
 CALL sync_patch_array ...
ENDIF
YAC – Exchange Phase

data exchange

Return values for the info argument

```
enum, bind(c)
    enumerator :: NONE = 0
    enumerator :: COUPLING = 1
    enumerator :: RESTART = 2
    enumerator :: GET_FOR_RESTART = 3
    enumerator :: PUT_FOR_RESTART = 4
    enumerator :: GET_FOR_CHECKPOINT = 5
    enumerator :: PUT_FOR_CHECKPOINT = 6
    enumerator :: OUT_OF_BOUND = 7
end enum
```
YAC – Termination Phase

termination of coupling

CALL yac_ffinalize()

- frees all internal data structures related to coupling
- MPI communicators may no longer be available
- will call MPI_FINALIZE
 - if MPI_INIT has been called by yac_finit
 - if MPI_FINALIZE has not already been called
Recommended calling sequence

CALL MPI_init (...)

CALL yac_finit (...)

CALL yac_finit_comp (...)

CALL yac_fsearch (...)

CALL yac_fget_local_comm (...)

CALL yac_ffinalize ()

CALL MPI_finalize (...)
YAC – Component XML Configuration

```xml
<?xml version="1.0" encoding="UTF-8"?>
<component
    xmlns="http://www.w3schools.com"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.w3schools.component.xsd">
    <id>1</id>
    <name>atmo</name>
    <model>ICON</model>
    <simulated>atmosphere</simulated>
    <transient_grid_refs>
        <transient_grid_ref collection_size="2" grid_ref="1" id="1" transient_ref="1"/>
        <transient_grid_ref collection_size="2" grid_ref="1" id="2" transient_ref="2"/>
        <transient_grid_ref collection_size="3" grid_ref="1" id="3" transient_ref="3"/>
        <transient_grid_ref collection_size="4" grid_ref="1" id="4" transient_ref="4"/>
        <transient_grid_ref collection_size="4" grid_ref="1" id="5" transient_ref="5"/>
        <transient_grid_ref collection_size="1" grid_ref="1" id="6" transient_ref="6"/>
        <transient_grid_ref collection_size="1" grid_ref="1" id="7" transient_ref="7"/>
        <transient_grid_ref collection_size="1" grid_ref="1" id="8" transient_ref="8"/>
        <transient_grid_ref collection_size="5" grid_ref="1" id="9" transient_ref="9"/>
    </transient_grid_refs>
    ...
</component>
```
<transients>
 <transient id="1" transient_standard_name="surface_downward_eastward_stress"/>
 <transient id="2" transient_standard_name="surface_downward_northward_stress"/>
 <transient id="3" transient_standard_name="surface_fresh_water_flux"/>
 <transient id="4" transient_standard_name="total_heat_flux"/>
 <transient id="5" transient_standard_name="atmosphere_sea_ice_bundle"/>
 <transient id="6" transient_standard_name="sea_surface_temperature"/>
 <transient id="7" transient_standard_name="eastward_sea_water_velocity"/>
 <transient id="8" transient_standard_name="northward_sea_water_velocity"/>
 <transient id="9" transient_standard_name="ocean_sea_ice_bundle"/>
</transients>
<grids>
 <grid id="1" alias_name="atmos_grid"/>
 <grid id="2" alias_name="ocean_grid"/>
</grids>
<?xml version="1.0" encoding="UTF-8"?>
<component
 xmlns="http://www.w3schools.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3schools.component.xsd">
 <id>1</id>
 <name>atmo</name>
 <model>ICON</model>
 <simulated>atmosphere</simulated>
 <transient_grid_refs>
 <transient_grid_ref collection_size="2" grid_ref="1" id="1" transient_ref="1"/>
 <transient_grid_ref collection_size="2" grid_ref="1" id="2" transient_ref="2"/>
 <transient_grid_ref collection_size="3" grid_ref="1" id="3" transient_ref="3"/>
 <transient_grid_ref collection_size="4" grid_ref="1" id="4" transient_ref="4"/>
 <transient_grid_ref collection_size="4" grid_ref="1" id="5" transient_ref="5"/>
 <transient_grid_ref collection_size="1" grid_ref="1" id="6" transient_ref="6"/>
 <transient_grid_ref collection_size="1" grid_ref="1" id="7" transient_ref="7"/>
 <transient_grid_ref collection_size="1" grid_ref="1" id="8" transient_ref="8"/>
 <transient_grid_ref collection_size="5" grid_ref="1" id="9" transient_ref="9"/>
 </transient_grid_refs>
...

YAC – Component XML Configuration
CALL yac_fdef_comp ("atmo", comp_id)
<?xml version="1.0" encoding="UTF-8"?>
<component
 xmlns="http://www.w3schools.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3schools.component.xsd">
 <id>1</id>
 <name>atmo</name>
 <model>ICON</model>
 <simulated>atmosphere</simulated>
 <transient_grid.refs>
 <transient_grid_ref collection_size="2" grid_ref="1" id="1" transient_ref="1"/>
 <transient_grid_ref collection_size="2" grid_ref="1" id="2" transient_ref="2"/>
 <transient_grid_ref collection_size="3" grid_ref="1" id="3" transient_ref="3"/>
 <transient_grid_ref collection_size="4" grid_ref="1" id="4" transient_ref="4"/>
 <transient_grid_ref collection_size="4" grid_ref="1" id="5" transient_ref="5"/>
 <transient_grid_ref collection_size="1" grid_ref="1" id="6" transient_ref="6"/>
 <transient_grid_ref collection_size="1" grid_ref="1" id="7" transient_ref="7"/>
 <transient_grid_ref collection_size="1" grid_ref="1" id="8" transient_ref="8"/>
 <transient_grid_ref collection_size="5" grid_ref="1" id="9" transient_ref="9"/>
 </transient_grid.refs>
...

<transient_grid_refs>
 <transient_grid_ref collection_size="2" grid_ref="1" id="1" transient_ref="1"/>
 <transient_grid_ref collection_size="2" grid_ref="1" id="2" transient_ref="2"/>
 <transient_grid_ref collection_size="3" grid_ref="1" id="3" transient_ref="3"/>
 ...
 <transient_grid_ref collection_size="5" grid_ref="1" id="9" transient_ref="9"/>
</transient_grid_refs>

CALL yac_fput (field_id, nbr_hor_points, 5, &
 buffer(1:nbr_hor_points,1:5), &
 info, ierror)

CALL yac_fget (field_id, nbr_hor_points, 2, &
 buffer(1:nbr_hor_points,1:2), &
 info, ierror)
...<transients>
 <transient id="1" transient_standard_name="surface_downward_eastward_stress"/>
 <transient id="2" transient_standard_name="surface_downward_northward_stress"/>
 <transient id="3" transient_standard_name="surface_fresh_water_flux"/>
 <transient id="4" transient_standard_name="total_heat_flux"/>
 <transient id="5" transient_standard_name="atmosphere_sea_ice_bundle"/>
 <transient id="6" transient_standard_name="sea_surface_temperature"/>
 <transient id="7" transient_standard_name="eastward_sea_water_velocity"/>
 <transient id="8" transient_standard_name="northward_sea_water_velocity"/>
 <transient id="9" transient_standard_name="ocean_sea_ice_bundle"/>
</transients>
<grids>
 <grid id="1" alias_name="atmos_grid"/>
 <grid id="2" alias_name="ocean_grid"/>
</grids>
</component>
<transients>
 <transient id="1" transient_standard_name="surface_downward_eastward_stress"/>
 <transient id="2" transient_standard_name="surface_downward_northward_stress"/>
 <transient id="3" transient_standard_name="surface_fresh_water_flux"/>
 ...
 <transient id="9" transient_standard_name="ocean_sea_ice_bundle"/>
</transients>

CALL yac_fdef_field &
 & ("surface_downward_eastward_stress", &
 & component_id, grid_id, point_id, &
 & 1, field_id(1))

...

CALL yac_fdef_field &
 & ("ocean_sea_ice_bundle", &
 & component_id, grid_id, point_id, &
 & 1, field_id(9))
CALL `yac_fdef_grid` ("atmos_grid",

[...],

grid_id)
<transient_grid_refs>
 <transient_grid_ref collection_size="2" grid_ref="1" id="1" transient_ref="1"/>
 <transient_grid_ref collection_size="2" grid_ref="1" id="2" transient_ref="2"/>
 <transient_grid_ref collection_size="3" grid_ref="1" id="3" transient_ref="3"/>
 <transient_grid_ref collection_size="4" grid_ref="1" id="4" transient_ref="4"/>
 ...
 <transient_grid_ref collection_size="5" grid_ref="1" id="9" transient_ref="9"/>
</transient_grid_refs>

<transients>
 <transient id="1" transient_standard_name="surface_downward_eastward_stress"/>
 <transient id="2" transient_standard_name="surface_downward_northward_stress"/>
 <transient id="3" transient_standard_name="surface_fresh_water_flux"/>
 <transient id="4" transient_standard_name="total_heat_flux"/>
 ...
 <transient id="9" transient_standard_name="ocean_sea_ice_bundle"/>
</transients>

<grids>
 <grid id="1" alias_name="atmos_grid"/>
 <grid id="2" alias_name="ocean_grid"/>
</grids>
YAC – XML Configuration

Coupling GUI

<table>
<thead>
<tr>
<th>File</th>
<th>Couple</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

coupling_esm_R2B4.xml

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transients</td>
<td></td>
</tr>
<tr>
<td><code>total_heat_flux</code></td>
<td>checked</td>
</tr>
<tr>
<td><code>atmosphere Sea Ice Bundle</code></td>
<td>checked</td>
</tr>
<tr>
<td><code>sea_surface_temperature</code></td>
<td>checked</td>
</tr>
<tr>
<td><code>eastward Sea Water Velocity</code></td>
<td>checked</td>
</tr>
<tr>
<td><code>northward Sea Water Velocity</code></td>
<td></td>
</tr>
</tbody>
</table>

Basic settings

- **Calendar:** proleptic-gregorian
- **Timestep unit:** second
- **Start date:** +1800-01-01T00:00:00.000
- **End date:** +2100-01-01T00:00:00.000
YAC – XML Configuration
YAC – XML Configuration

Coupling parameters for:
eastward_sea_water_velocity (ICON_ocean -> ICON_atmosphere)

- Source timestep: 1.800 second(s)
- Target timestep: 900 second(s)
- Coupling period: 3.600 second(s)
- Operation: accumulate
- Source Time Lag: 1 model timestep unit(s)
- Target Time Lag: 1 model timestep unit(s)

Default parameters

- Use these parameters as default
- Load default params

Save
Close
Source time step

- time interval between two consecutive calls to yac_fput

Target time step

- time interval between two consecutive calls to yac_fget

Requirement

Source or target time step must be equal to or an integer multiple of the other.
Coupling period

- Time interval at which data are exchanged (with internal calls to MPI_SEND and MPI_RECV via the YAXT library)

Requirement

Coupling period must be an integer multiple of the source/target time step
YAC – Building

YetAnotherCoupler 2.4.2

Related Pages

Here is a list of all related documentation pages:

- Example on how to use XML routines from config.xml
- Configuration examples for different systems
- Description of how to build and run the Java GUI
- YAC instances
 - Example on how to use YAC instances
 - Interpolation
 - Interpolation stack
 - Interpolation methods
 - Average interpolation
 - Conservative interpolation
 - Interpolation from weight file
 - Fixed value interpolation
 - Hybrid cubic spherical Bernstein/Bézier patch interpolation
 - N-Nearset-Neighbour Interpolation
 - Radial basis function interpolation
 - Source to Target mapping
 - Creep Fill
 - License
 - Interface Overview
 - The Fortran interface (yac_finterface.f90) and ma_yac_finterface.f90
 - The C interface (yac_interface.h)
 - Rationale
 - Supplemental information on YAC internals
 - Polygon clipping in YAC
 - Tips/Tricks for developers
 - Sphere Partitioning Algorithm
 - Creating weight files and visualise them
 - Condensed release Information
 - XML configuration file
 - Todo List

Generated on Fri Dec 10 2021 08:55:22 for YetAnotherCoupler by niagrapen 1.9.1
YAC – Documentation & Code

Doxygen

http://dkrz-sw.gitlab-pages.dkrz.de/yac/

Source Code (version 2.4.2)

```
git clone -b 'release-2.4.2' --single-branch --depth 1 https://gitlab.dkrz.de/dkrz-sw/yac
```

Documentation with further Links

https://www.dkrz.de/dienste/softwareentwicklung