A Graphical User Interface for
configuring YAC
Version 2.0.0
Rene Redler!, Moritz HankeZ, and Maxim Yastremsky1

! Max-Planck-Institut fiir Meteorologie, Hamburg
2 Deutsches Klimarechenzentrum, Hamburg

Aug 2020

We introduce the usage of the graphical user interface to generate
a coupling configuration Extensible Markup Language (XML) file for
YAC. We explain the necessary steps to define the coupling between
a pair of model components and describe the options we offer to
configure a particular interpolation method. In the appendix we
provide an example of the XML files which are required for input
and explain some elements of the resulting XML file generated by
the GUL

1. Starting the GUI

The java source code for the graphical user interface (GUI) is shipped together
with the source code of the coupler library. A precompiled Java archive (jar)
file is available. To get up and running with the precompiled archive file, follow
these steps:

1. Make sure you have a OpenJDK!' installed. The following open-source
builds of the Java Development Kit have been tested:

— openjdk 11.0.17

— openjdk 12°

"https://openjdk. java.net/
’http://jdk.java.net/11/
Shttp://jdk.java.net/12/

https://openjdk.java.net/
http://jdk.java.net/11/
http://jdk.java.net/12/

1. Starting the GUI

2. launch the YAC GUI via command line

java —-jar CouplingGui.jar

The jar file can be compiled by using ant:
1. Make sure you have Apache Ant * installed.

2. Once, ant is available the whole java project is built within the GUI direc-
tory using

ant build

and the java library is generated by typing

ant create_run_jar

Note that the Runtime Environment is sufficient for executing the (shipped) jar
file. To lauch the GUI invoke

java —-jar CouplingGui. jar

In its current version 1.5 the GUI requires a Extensible Markup Language (XML)
description of model components as input to allow for the configuration of the
coupling. An example of a component XML file is provided in Appendix A.
Compared to the coupling XML file (an example is provided in Appendix B) a
component XML file has a very simple structure and can easily (probably much
faster) be generated with a simple text editor.

The start window appears as shown in Fig. 1. To create a new coupling from
scratch the user needs to load two components represented by XML files by
clicking on Component 1 and Component 2 buttons below the file status line.
After clicking on any of these buttons the standard Open File Dialogue will
appear. When the user has selected the component XML file and clicked on the
Open button, the content of the component file will be loaded and displayed in
the component panel. Typically, this will consist of a list of transients (see Fig.
2). Likewise, the second component has to be loaded. For each transient the GUI
displays the name of the field, the name of the numerical grid on which the field
is defined and its collection size. As YAC currently supports a 2-dimensional
interpolation in the horizontal (on the sphere) only, the collection size can either
be the number of vertical levels of this field or the number of horizontal fields
hidden behind this particular field name, sometimes also referred to as bundles.

“http://ant.apache.org/manual/index.html

http://ant.apache.org/manual/index.html

2. New coupling

File Couple
New Coupling
(Component 1 8 | Component 2 a
Transients Transients
Basic settings
Calendar: proleptic-gregorian % Timestep unit: | second
Start date: | 1800-01-01T00:00:00.000 [| Stdout redirect
End date: |2100-01-01T00:00:00.000 Root redirect

Figure 1: YAC XML configuration GUI start window.

2. New coupling

To start creating a coupling between any two physical fields (transients) of two
different components the user needs to click the check box representing the
source field. In this case all transients which cannot be coupled with this source
transient will remain inactive. The transient is considered as valid for coupling
only if it has the same name and collection size. After finding the second possible
transient for coupling and the checking of its corresponding check box, a red
arrow connecting these two transients will be drawn. The direction of this
arrow is pointing into the direction of the coupling, from the source to the
target. Both directions of coupling are possible: from the left component to the
right one and vice versa. Once an interpolation instruction is defined the colour
of the respective arrows are turned into green, like shown in Fig. 2 for the heat
flux.

Note that “collection size” has the same meaning as in the Fortran/c user in-
terface where it is used to describe the number of vertical levels or the number
of horizontal fields that are stored with this one transient. The same horizontal
interpolation stack is applied to all members in the collection.

3. Basic settings

File Couple
New Coupling

(atmo a | ocean [x]
Transients Transients
collect. size: 2 collect. size: 2
surface_fresh_water_flux v v surface_fresh_water_flux
Grid: grid1 Grid: grid1
collect. size: 3 collect. size: 3
total_heat_flux v v total_heat_flux
Grid: grid1 Grid: grid1
collect. size: 4 collect. size: 4
atmosphere_sea_ice_bundle 4 4 atmosphere_sea_ice_bundle
Grid: gridl Grid: grid1
collect. size: 4 collect. size: 4
sea_surface_temperature v v sea_surface_temperature
Grid: gridl @ Crid: grid1l

collect. size: 1

eastward_sea_water_velocity
Grid: gridl

collect. size: 1
northward_sea_water_velocity
Grid: grid1

collect. size: 1
ocean_sea_ice_bundle

Grid: gridl

collect. size: 5

Basic settings

collect. size: 1

eastward_sea_water_velocity
Grid: gridl

collect. size: 1
northward_sea_water_velocity
Grid: gridl

collect. size: 1
ocean_sea_ice_bundle

Grid: gridl

collect. size: 5

Calendar: proleptic-gregorian % Timestep unit: | second 3
Start date: |1800-01-01T00:00:00.000 || Stdout redirect
End date: |2100-01-01T00:00:00.000 Root redirect

Figure 2: Example of a coupling configuration.

3. Basic settings

Time settings of coupling can be specified in the Basic settings panel of the main
window. The parameter Calender has 3 options: Proleptic-Gregorian, 360d
and 365d which activates either the Proleptic-Gregorian calendar®, a calendar
with an equal length of all months (30 days), or a calendar without any leap
years. Specific dates of coupling can be set manually in the fields Start date
and End date. After any user input or other interactions with values of these
fields the user will be notified by the colour of the strings whether the provided
date is correct or not according to the specified calendar. A green colour of values
means that the date is correct for the selected calendar while red means it is
not. For the Proleptic-Gregorian calendar also a quick date picker is available
as an alternative. It helps to select any date with a few clicks. This widget
will disappear after selecting the day of the chosen year and month or with the
starting of any user interactions in the date edit field. Note that YAC offers the
option to internally overwrite the calendar settings at runtime in the coupled
application by using the Fortran or C interface routines. However, this will not
change the contents of the XML file.

Shttp://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar

http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar

4. Subpanels

The Timestep unit parameter indicates which time units are to be used in the
timestep parameter tab described in Sec. 4.1.2. The options are second, minute,
hour, day, month, year, millisecond, ISO_format, string. If the timestep
parameter shall be provided e.g. as a shell variable, for example ${dt_atm}, the
user has to select string as unit. In this case the final coupling XML file needs
to be edited manually, and string needs to be replaced by the time unit (or
IS0_format) in which the value is provided that is going to replace the shell
variable.

Furthermore, the user can request the redirection of stdout and stderr by check-
ing Stdout redirect. When this is activated, output will be redirected after
the application has called yac_ finit or yac_ cinit. The output file name gets the
name of the respective component followed by the local MPI process ID. When
Stdout redirect is activated the user has the additional choice to let only the
component root processes redirect their output rather than letting each process
write into its own file.

4. Subpanels

4.1. Setting parameters of specific transients coupling

In case the user has coupled two transients, additional parameters have to be
provided for the coupling. To open the dialogue for setting up coupling pa-
rameters (Fig. 3) the user has to click on any of the coupled transients in the
component panel area. The coupling parameters dialogue will appear after that.
This dialogue has 2 tabs: Interpolation and Timestep.

4.1.1. Interpolation parameters tab

The user has the option to store the weights of the interpolation stack for cou-
pling a transient into a file. Writing out is enabled by checking Enforce write
weight file and specifying the filename with the extension .nc (Network Com-
mon Data Form?).

During the exchange the interpolation stencils are filled on the source and inter-
polated values are sent to the target processes. When deselecting Mapping on
source the raw source data are sent to the target where the interpolated values
are calculated. With the second option the halo exchange on the source grid is
avoided with the caveat that possibly more messages are sent to the target. The
put will be faster but the get will perform the implicit synchronisation instead
on the target side.

Shttps://en.wikipedia.org/wiki/NetCDF

ot

https://en.wikipedia.org/wiki/NetCDF

4.1. Setting parameters of specific transients coupling

Interpolation QRO

Coupling parameters for:

total_heat_flux (grid1 -> grid1)
surface_fresh_water_flux (gridl -> grid1)
surface_downward_eastward_stress (grid1 -> grid1)
surface_downward_northward_stress (grid1 -> grid1)

Enforce write weight file
file: Browse

Mapping on source
Choose preferred interpolation method:

Option 0 n-nearest_neighbor ﬁ [x]
n: 1
Gauss Scale Factor: 01

Weighted: ARITHMETIC_AVERAGE a
Option 1 | fixed_value B o
user value: -999.9
Option 2 | none selected a [x]

Add interpolation

Default parameters

Use these parameters as default Load default params

Save Close

Figure 3: Coupling interpolation parameters window.

Interpolation parameters are used to specify the sequence of interpolation meth-
ods which will be used for the interpolation. The specification of interpolation
methods is organised in a list. The default number of interpolation methods
which can be specified is three, but additional method options will appear after
clicking on the Add more interpolations button. The user has to define at
least one interpolation method in order to activate the coupling. Otherwise, no
interpolation weights will be calculated and the particular exchange of transients
will remain inactive.

Most interpolation methods require more specific parameters. These will be
dynamically added next to the particular interpolation method and described
in some more detail in Sec. 4.2.

The complete selection can be saved as default setting for defining further tran-
sient couples with Use these parameters as default. This will then activate
Forget default params. For a next transient couple definition Load default
params will apply the currently stored default. New defaults can be set by
first pressing Forget default params, setting new parameters and again Use
these parameters as default.

4.1.2. Timestep parameter tab

On the timestep tab (Fig.4) the user can indicate time parameters of the cou-
pling. In particular we require the user to specify the model time step or in

4.1. Setting parameters of specific transients coupling

other words, the period with which the respective exchange routines are called
by the application. Next we require the user to specify the coupling period for
the transient. The units of these parameters are controlled in the main window
of the application in the Basic settings panel described earlier in Sec. 3. When
the unit is set to time unit like e.g. minute, the user has to enter non-negative
integers. If the unit is IS0_format, the time step is represented by the format
defined by IS0 8601 for time durations’. When the unit is string, the user
is supposed to enter the name of the parameter (or shell variable) that is later
used to store the value of the time step, for example ${dt_oce}.

Interpolation

Coupling parameters for:
surface_downward_eastward_stress (grid1 -> grid1)
surface_downward_northward_stress (grid1 -> grid1)
surface_fresh_water_flux (grid1 -> grid1)

Source timestep: 600
Target timestep: 3600

Coupling period 3600
Operation: average 3

Source Time Lag: 1 model timestep unit(s)

Target Time Lag 1 model timestep unit(s)

Default parameters

Use these parameters as default Load default params

Save Close

Figure 4: Coupling timestep parameters window.

In addition, the Source Time Lag and Target Time Lag can be specified. The
lag is a positive integer number or zero. It is used in the library to adjust
the internal event trigger clock for the source (put) and target (get) operations
according to the timestepping algorithm used in the application. A source time
lag of 2 will put forward the internal clock for the put event by 2 times the source
time step. Like for the time step, the lag can be provided as a shell variable, for
example ${atm_lag}.

Note, that the shell variables need to be converted into valid input before it is
read by the YAC library.

To ensure that no negative integers are provided, the symbol - is not accepted
in the above mentioned two input fields.

Like with the interpolation parameters tab, default settings can be stored and
applied.

"https://en.wikipedia.org/wiki/IS0_8601#Durations

https://en.wikipedia.org/wiki/ISO_8601#Durations

4.2. Interpolation specific parameters

4.2. Interpolation specific parameters

Masking is not handled and cannot be triggered via the coupling xml configu-
ration file. Masks can only be set via the Fortran and c interface. If masks are
set they are considered by all interpolation methods!

4.2.1. Average interpolation

The values at the vertices or other locations of an element can be combined to
a simple arithmetic average or can contribute to the source points weighted by
their distances. In the latter case distances between sources and target location
are calculated on the sphere. These distances are then normalised to 1. Using the
vertices of a quadrilateral element the distance-weighted average is equivalent
to a bi-linear interpolation.

Partial coverage (Boolean)

By setting this to true, partially covered target cells will receive
an interpolated value.

Weighted (Enumeration: Distance weighted or Arithmetic average, default
Arithmetic average)

Choice for weighting

4.2.2. N-nearest Neighbour interpolation

The interpolation finds a number n of nearest neighbours to the target location.
The n nearest neighbours can be combined to a simple arithmetic average or can
contribute weighted by their distances to the source points. For the latter case
the “DISTANCE_WEIGHTED?” operation uses normalised inverse distances
between sources and target location are on the sphere. “GAUSS_WEIGHTED”
uses a Gauss kernel
d2
eXP(*@)

where d is the between source and target points, L is a length scale derived
from the source points of the individual stencil (average distance over all pairs
of source points of the local stencil), and s is a scaling factor provided by the
user. The default of s = 0.1 showed the lowest relative error for our test cases.

N (Integer value)

Number of source point values requested for the nearest-neighbour
interpolation.

4.2. Interpolation specific parameters

Weighted (Enumeration: “DISTANCE_ WEIGHTED”, “GAUSS_ WEIGHTED”,
or default “ARITHMETIC__AVERAGE”)

Choice for weighting
gauss__scale (Double value)

Scaling factor of the Gauss kernel, default 0.1

4.2.3. Radial Basis Functions

The interpolation finds a number n of nearest neighbours around the target
location and used radial basis functions to obtain a value at the target location.

N (Integer value)

Number of source point values around a target location requested
for the construction of the radial basis functions.

RBF Kernel (Enumeration: Gauss Kernel, default Gauss Kernel)

For further information see

e Joshua Reinheimer, 2018: Vector Field Interpolation using Radial Basis
Functions, Master Thesis, Department of Mathematics University of Ham-
burg, Germany, October 26, 2018, 68 pages.

4.2.4. Conservative interpolation

The classical first-order conservative remapping identifies for each target cell all
overlapping source cells. Interpolation weights are calculated based on the frac-
tional overlap. Special care is taken about the nature of the grid and peculiarities
close to the poles. The YAC algorithm works seamlessly across poles.

Order (Integer, default 1)

YAC supports 1st order (1) and 2nd order (2) conservative remap-
ping. For further information see

E. Kritsikis, M. Aechtner, Y. Meurdesoif and T. Dubos, 2017:
Conservative interpolation between general spherical meshes,
Geosci. Model Dev., 10, 425-431, https://doi.org/10.5194/
gmd-10-425-2017,2017.

https://doi.org/10.5194/gmd-10-425-2017, 2017
https://doi.org/10.5194/gmd-10-425-2017, 2017

4.2. Interpolation specific parameters

Enforced conservation (Boolean, default false)

By setting this to true, local conservation is achieved by correct-
ing the local weights obtained from the partial area contributions
such that they locally add up to 1 as far as numerical precision
allows.

Partial coverage (Boolean, default false)

By setting this to true, partially covered source cells will be
interpolated.

Normalization (Enumeration: FRACAREA or DESTAREA, default DESTAREA)

In case Partially coverage is set to true, a request for FRACAREA
will use the fractional (partially covered) area to normalise the
weights. When DESTAREA is selected weights will be nor-
malised with the destination area, the area of the target cell.

4.2.5. Bernstein-Bézier interpolation

As one option for a higher-order interpolation YAC provides an interpolation
based on hybrid cubic spherical Bernstein-Bézier (HCSBB) polynomials or patches.
This interpolation can be considered as an alternative for a bicubic interpola-
tion which is frequently used for interpolations on block-structured grids with
quadrilateral elements. The HCSBB patches do not conserve properties, but in
contrast to the first-order conservative remapping it does deliver results which
are not piecewise constant especially when interpolating from coarse to fine grids.

For further information see

o Peter Alfeld, Marian Neamtu, Larry L. Schumaker, 1996: Bernstein-Bézier
polynomials on spheres and sphere-like surfaces, Computer Aided Geo-
metric Design, Volume 13, Issue 4, Pages 333-349, https://doi.org/10.
1016/0167-8396(95)00030-5.

e Xiaoyu Liu and Larry L Schumaker, 1996: Hybrid Bézier patches on
sphere-like surfaces, Journal of Computational and Applied Mathemat-
ics, Volume 73, Issues 1-2, Pages 157-172 https://doi.org/10.1016/
0377-0427(96)00041-6

e https://en.wikipedia.org/wiki/Bernstein_polynomial

e https://en.wikipedia.org/wiki/Bernstein-Bezier_curve

10

https://doi.org/10.1016/0167-8396(95)00030-5
https://doi.org/10.1016/0167-8396(95)00030-5
https://doi.org/10.1016/0377-0427(96)00041-6
https://doi.org/10.1016/0377-0427(96)00041-6
https://en.wikipedia.org/wiki/Bernstein_polynomial
https://en.wikipedia.org/wiki/Bernstein-Bezier_curve

5. Saving a new XML file

4.2.6. User file interpolation

Files containing the interpolation weights can be generated off-line e.g. using
the CDO. By selecting the user file interpolation and providing a name for the
file containing the specific weights YAC will use these weights for the remapping.
As any other interpolation the user file interpolation is part of the interpolation
stack, and other interpolations can be selected that shall be applied to target
cells which are not included in the weight file.

Furthermore, the user can force YAC to write out the interpolation weights into
a file by checking Enforce write weight files (see Sec. 4.1.1) which can then
also be used in subsequent settings for the user file interpolation.

YAC location (Enumeration: CELL, EDGE or CORNER)

For the user file interpolation it is still required to specify whether
the data are located on cell edges, cell corners (vertices) or some-
where in the cell center.

4.2.7. Source to target map

The source to target mapping has been introduced mainly to support the remap-
ping of drainage from the hydrology model onto the ocean grid. The drainage is
provided on grid cells at the land-sea border representing the river mouths. All
source cells containing some drainage need to be assigned to a target cell, while a
target cell may accept input from more than just one source cell. The source to
target mapping ensures that a non-masked source cell is assigned to the nearest
available (non-masked) target cell. Each of those source cells contributes with a
weight of 1, no matter how many source cells are assigned to a particular target
cell.

5. Saving a new XML file

To save the coupling that has been created through the previously described
actions in the application the Save and Save as ... options are available in
the File menu. In case the user did not save the coupling before, for both of these
menu options firstly the Saving File dialogue will appear. After a successful
saving of the file, the file status string will show the file name of the newly
created coupling XML file. Subsequent plain save operations will overwrite the
existing file. The GUI does not provide any automated versioning of XML files.
This is left to the user with the Save as ... option. If user exits the program
without saving the newly created file, a warning window will pop up to ask if
the user want to save it before exiting.

11

6. Modification of an existing coupling configuration

6. Modification of an existing coupling configuration

The above allows for saving intermediate steps or the final setting. In order
to continue the work to create or to modify an existing setting a valid coupling
XML file can be loaded using open in the File menu. As described in the previous
sections all parameters can be modified, and connections between any two fields
can be activated or deactivated.

7. Multi component coupling

Once a pair of components has been loaded following the description above (and
the coupling has been defined) additional component XML descriptions can be
loaded via the menu entry Couple add component.

Alternatively we allow to use the “add component” mechanism to first load all
components before starting with any further configuring.

When selecting select active components from the Couple menu a window
similar to what is depicted in Fig. 5 will pop up. In the upper part the GUI
lists the available component descriptions while the lower part displays those
component pairs for which some coupling between transients has already been
defined.

Left Component Right Component
atmo atmo

ocean ocean

seaice seaice

Existing couples

Coupling between Number of coupled fields
ocean<->seaice 6

atmo<->ocean 6

Apply | Close

Figure 5: Selection of component pairs.

A new set of component pairs can now be selected from the list in the upper half.
By clicking Apply the selected two components will now be displayed similar for
Fig. 2 and the coupling can be defined. Already (partly) defined component
pairs can also be selected from the lower part, by a click on Apply this particular
pair is now on display for further editing.

12

A. Component XML description

A. Component XML description

In order to generate a coupling XML file the GUI requires a XML description of
two model components which are going to be coupled as input. As can be seen
in Fig. A1l the structure of such a component XML file is rather simple and can
easily be generated with a simple text editor.

TZmml wersion="1.0" encoding="UTF-5"?>

Lcomponent
anlns="http: /e wischools. com”
nlns msi="http: /A vl org 2001/ ML Schena-instance "
#si:schemalocation="http://fwww w3schools. com component.zxsd">

€1d»2¢f1d>

Lname »ICON-oceand fname »
<model>ICONC fmodel >
<simulated»oceand fsimulated s

<transient grid refs>
<transient grid ref i
<transient grid ref i
<transient grid ref i
<transient gqrid ref
<transient grid ref i
<transient grid ref i

¢ftransient_grid_refs>

" transient_ref="1" grid ref="1"
" transient_ref="2" grid ref="1"
transient ref="3" grid_ref="1"
" transient_ref="4" grid ref="1"
" transient ref="5" grid ref="1" Ll
" transient_ref="6" grid_ref="1" collection_size="Z2" f>

2
g
1o
an
4

<transients>
<transient id="1" transient_standard_name="surface downward eastward_stress"/>

<transient transient_standard_name="surface_downward_northward stress"f»
<transient transient standard_name="sea_surface_ temperature"f>
{transient transient standard_name="water flux"/»

<transient transient standard name="heat flux"f>

{transient " transient standard_name="albedo"/>

<ftransientsy

<grids>
<grid id="1" alias_name="RZE04 no_land" />
<fgrids>

<foomponent>

Figure Al: Example of a component XML file

The id has to be selected such that it is unique among the component XML
descriptions, likewise the name of the component shall be unique.

A list of transients links standard names with a unique local identifier. For
each component these IDs can run from 1 to N.

The list of transient_grid_refs provides additional information for the tran-
sients. The IDs of the transient_grid_refs shall again run from 1 to N. These
references are later used in the coupling XML description to access the transient
information. The number of the transient_ref refers to the transient ID
explained above. A transient_ref of 3 refers to transient ID 3, and thus to
heat_flux. Likewise, the grid_ref of 1 refers to the grid ID 1 defined below.
In this case we have only defined one grid, thus the grid_ref is set to 1 for all
transients in the list of transient_grid_refs. Last but not least the collection
size (size of bundle or number of vertical levels) has to be provided for each
transient.

13

B. Coupling XML dependencies

B. Coupling XML dependencies

A coupling XML file as it was produced by the GUI is shown in Fig. BI.

?aml version="1.0" encoding="UTF-2" standalone="no"?>

<coupling zmln

Fmlns:xsi="http: SAmm w3 org 2001 FEMLSchena-instance "
#s1:schemaLocation="http: /fww. wischools. com coupling. xsd" >
<redirect redirect of root="true" redirect stdout="true"/»

<components>
<component id="1"3»
<raEme >atmog/namnes >
<model>ICON< fmodel>

<zinulatedratmosphered/sinulateds

<transient_grid refs>

<transient_grid_ref " grid_ref="1"
<transient grid ref " grid ref=
<transient grid_ref " grid_ref

<transient_grid_ref collection_size="4" grid_ref=
<transient_grid_ref collection size="4" grid ref= L
<transient_grid_ref collection_size="1" grid_ref="1" transient_ref="6"/>
<ftransient grid refs>
</component>
<component id="2"3»
<rEME >0Ceand fnane »
<model>ICON fmodel>
<similated»oceandfsinulated>
<transient_grid refs>
<transient_grid_ref " grid_ref="1"
<transient grid ref " grid ref=
<transient grid_ref . " grid_ref
<transient grid ref collection size="4" grid_ref=

<transient_grid_ref
<transient_grid_ref
<ftransient grid refs>

collection size=
collection_size="1"

grid ref=
grid_ref="1"

transient:raf="6"f)

</component>

</components>

<transients>
<transient i transient standard name="surface downward eastward stress"/»
{transient i transient_standard name="surface downward_northward stress" />
{transient transient standacd_name="surface fresh water flux"/>
{transient i transient_standacd_name="total_heat flux"/»
<transient 1 transient_standard_name="atmosphere_sea_ice_bundle"/>
{transient i transient_standard name="sea_surface temperature'/»

<ftransients>

<grids>
<grid alias_name="gridl" id="1"#>

<fogrids>

{dates>

<start_date>+1800-01-01T00:00:00. 000¢ start dated

<end_datex+2100-01-01T00:00:00. 000<end_date>

<calendar»proleptic-gregorian</calendar >

</dates>

<tinestep_unitdsecond(/ftimestep unit>

<coupless
<couple>

<componentl component i
<oomponent? component 1

<transient_couple transient id="1"»
<source component_ref="1" transient grid ref="1"#>

</t

<fcoup

<foouples
<focoupling>

<target transient grid ref="1"¢»
<timestepl
<zource»ll¢fsource>
<target»l0</targets
<coupling_period operation="accumulate" >60</coupling period>
<source_timelag»l<fsource_timelag>
<target timelag»0<¢ftarget timelag>
<frimestep
<interpolation_requirements use_source_mask="tru
<interpolation method="n-nearest neighbor"
<finterpolation requirements>
<debug mode at_source_after_interpolation="false" at source before interpolation="false" at_target="false"/>
<enforce_write_restart»false¢senforce_write_restarts>
<enforce write weight file filename="">false<fenforce write weight file>
ransient couple>
le>
>

" use_target mask="true">
welghted="DISTANCE WEIGHTED"/>

Figure B1: Example of a coupling XML file

For each component we have a list of N transient_grid_refs with consecutive
IDs from 1 to N, where each transient_grid_ref ID may have a different

collect

ion_size, grid_ref and transient_ref (Fig. B2).

These lists are copied from the component XML descriptions. The grid_ref
and transient_ref ids get updated (see Appendix A). Typically we will have

14

B. Coupling XML dependencies

<transient grid refs:

¢transient grid ref collection size="2" grid_ref="1" id="1" transient ref="1"/»
¢transient grid ref collection size="2" grid_ref="1" id="2" transient ref="2"/»
<transient grid ref collection size="1" grid_ref="1" id="3" transient ref="3"/»
<transient grid ref collection size="4" grid_ref="1" id="4" transient ref="4"/»
<transient grid ref collection size="4" grid_ref="1" id="5" transient ref="L5"/>
<transient grid ref collection size="2" grid_ref="1" id="6" transient ref="E6"/»

<ftransient grid_refs:

Figure B2: List of transient grid reference IDs

at least two entries in the grid element (Fig. B3), thus grid_ref becomes
either 1 or 2 in this case. In the same way the transient_ref ids point to the
appropriate entries in the transient list.

<grids>
<grid alias_name="RZE04 no land" id="1"/>
<grid alias_name="RIZB04" id="2"/>
<fogrids>

Figure B3: List of grids

In the couple (Fig. B4) the two components are listed with its component ID.
Next a list of transient couples is provided which defines the source component
identified by its component ID and its respective transient grid reference ID and
the transient grid reference ID of the target.

<ocouples:
<couple
<componentl component id="2"/»
<component? component id="1"/»
<transient couple transient id="5"32
¢source component ref="2" transient grid_ref="5"/>
<target transient grid_ref="5"/3

Figure B4: Coupling dependencies

	Starting the GUI
	New coupling
	Basic settings
	Subpanels
	Setting parameters of specific transients coupling
	Interpolation parameters tab
	Timestep parameter tab

	Interpolation specific parameters
	Average interpolation
	N-nearest Neighbour interpolation
	Radial Basis Functions
	Conservative interpolation
	Bernstein-Bézier interpolation
	User file interpolation
	Source to target map

	Saving a new XML file
	Modification of an existing coupling configuration
	Multi component coupling
	Component XML description
	Coupling XML dependencies

