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Chapter 1

Cluster Information

1.1 Introduction

PITBULL is a small testsystem which allows users of DKRZ’s current supercomputer
BLIZZARD to port and optimize their applications for the new Haswell CPU architecture,

which will also be used for the first phase of the next supercomputer.

This cluster’s

main purpose is to prepare users and DKRZ admins for a smooth transition to the next

installation called MISTRAL that will be available in summer 2015.

1.2 Cluster Nodes

The PITBULL testsystem contains: 1 login, 18 compute, 1 pre/postprocess and 2 admin

nodes (see Table [1.1)).

type hostname CPU cores(logical | memory | description

(nodes) cpus/HT)

login (1) btloginl.dkrz.de | 2x Intel Xeon | 24 (48) 128 GB | login nodes

(btcl) E5-2680 v3

(Haswell)
@ 2.5GHz

compute (18) | btc[2-19] 2x Intel Xeon | 24 (48) 128 GB | compute
E5-2680 v3 nodes
(Haswell)
@ 2.5GHz

pre/post (1) | btg0 2x Intel Xeon | 20 (-) 128 GB | pre/postproc.
E5-2680 v2 nodes with
(Ivy-Bridge) Nvidia GPU
@ 2.8GHz

admin (2) - 2x Intel Xeon | 12 (-) 32 GB admin nodes
E5-2620
@ 2.0GHz

Table 1.1: PITBULL node configuration

The Operating System on the PITBULL cluster is Red Hat Enterprise Linux release 6.4
(Santiago). Regarding the network, we use FDR Infiniband with a non-blocking Fat Tree

topology.




1.3 Data Management - Filesystems

On PITBULL we provide the Lustre parallel filesystem. We provide HOME, WORK and
SCRATCH partitions, which have different purposes as indicated in the following table:

filesystem mount description
point

HOME /home/ — Home filesystem - without backup
/lustre /pf

WORK /lustre/work | Project work filesystem - without backup

SCRATCH /lustre/scratchl User scratch filesystem - without backup,

regularly purged

DATA /pool/data Input data pool - without backup

SW /sw — Software repository available via module
/lustre/sw commands

Table 1.2: PITBULL filesystem configuration

The GPFS filesystems on BLIZZARD are not available on PITBULL. The new system
MISTRAL will use the same filesystems as PITBULL, but no data will be transferred
from PITBULL to MISTRAL. Instead, DKRZ will do an automatic migration of all user
data from BLIZZARD GPFS to Lustre for SHOME and $WORK directories as soon as
the MISTRAL system is starting production. Data that is needed on PITBULL should
be copied manually from GPFS to Lustre.

1.4 Access to the Cluster

Users can have access to the login nodes of the system only through SSH connections.
Currently there is no access possible from outside the DKRZ subnet, i.e.. user need to
connect to BLIZZARD or WIZARD first. For example, to connect to the system, users
must execute from their workstation the following command:

bash$ ssh username@blizzard.dkrz.de
bash$ ssh username@btloginl.dkrz.de




Chapter 2

Software Environment

2.1 Modules

Most of the installed software on PITBULL is organized through modules. Loading a
module adapts your environment variables to give you access to a specific set of software
and its dependencies. The modules are not organized hierarchically but have internal
consistency checks for dependencies and can uniquely be identified by naming convention
<modname>/<modversion>. Optionally, the version of the compiler that was used to build
the software is also encoded in the name (for example all modules built with the same
Intel compiler version are labelled with e.g. *-intel15)

2.1.1 Modules Available

Table provides a quick reference to some module categories. The list of available
modules will steadily grow to cover the (general) software needs of DKRZ users.

type modules available
compiler intel: Intel compilers with frontends for C, C++ and
Fortran

gcc: Gnu compiler suite

nag: NAG compiler

MPI intelmpi: Intel MPI

bullxmpi: Bullx-MPI with/without mellanox libraries
mvapich2: MVAPICH2 (an MPI-3 implementation)
openmpi: Open MPI

tools allinea-forge: Allinea DDT debugger and MAP profiler
cdo: command line Operators to manipulate and analyse
Climate and NWP model Data

ncl: NCAR Command Language

ncview: visual browser for netCDF format files
python: Python

Table 2.1: PITBULL module overview

2.1.2 Using the Module Command

Users can load, unload and query modules through the module command. Several useful
module commands are:



command description

module avail Shows the available modules

module show Shows what environment variables (paths) will be
<modname>/<version> modified when loading the module

module add Loads a specific module. Default version is loaded if
<modname>/<version> the version is not given

module list Lists what modules are currently loaded

module rm Unloads a module

<modname>/<version>

module purge Unloads all modules

module switch Replaces one module with another
<modname>/<version1>

<modname>/<version2>

Table 2.2: module command overview

2.1.3 Additional Software

Software which is not directly available via modules, like libraries, is located in the direc-
tory

/sw/rhel6-x64/

The main build characteristics are reflected by the directory names, e.g..
/sw/rhel6-x64/netcdf/netcdf_fortran-4.4.2-intell4/

is the 4.4.2 version of FORTRAN NetCDF library built with the Intel compiler version
14.

REMARK for NetCDF usage:

There is no module to set NetCDF paths for the user. If you need to specify such paths in
Makefiles or similar, please use the nc-config and nf-config tool to get the needed compiler
flags and libraries, e.g.

bash$ /sw/rhel6—x64/netcdf/netcdf_c—4.3.2—intel14/bin/nc—config ——cflags
—1I/sw/rhel6—x64/netcdf/netcdf_c—4.3.2—intel14/include \
—I/sw/rhel6—x64/sys/libaec—0.3.2—intel14 /include \
—1I/sw/rhel6—x64/hdf5/hdf5—1.8.14—threadsafe—intel14/include \
—I/sw/rhel6—x64/hdf4/hdf—4.2.10—intel14 /include

bash$ /sw/rhel6—x64/netcdf/netcdf_c—4.3.2—intel14/bin/nc—config ——libs
—L/sw/rhel6—x64/netcdf/netcdf_c—4.3.2—intel14/1ib —Inetcdf

bash$ /sw/rhel6—x64/netcdf/netcdf_fortran—4.4.2—intel14/bin/nf—config ——fflags
—I/sw/rhel6—x64/netcdf/netcdf fortran—4.4.2—intel14 /include

bash$ /sw/rhel6—x64/netcdf/netcdf fortran—4.4.2—intel14/bin/nf—config ——flibs
—L/sw/rhel6—x64 /netcdf/netedf_fortran—4.4.2—intel14/lib —Inetcdff \
—L/sw/rhel6—x64/netcdf/netcdf_c—4.3.2—intel14/1ib \

—WI1,—rpath,/sw/rhel6—x64 /netcdf/netcdf_c—4.3.2—intel14/lib —Inetedf \
—L/sw/rhel6—x64/hdf5/hdf5—1.8.14—threadsafe—intel14/lib \
—WI1,—rpath,/sw/rhel6—x64/hdf5/hdf5—1.8.14—threadsafe—intel14/lib —lhdf5 —lhdf5_hl \
—L/sw/rhel6—x64/sys/libacc—0.3.2—intel14 /1ib \
—WI,—rpath,/sw/rhel6—x64/sys/libaec—0.3.2—intel14/lib —1sz —lz —lcurl —Inetcdf




2.2 Compiler and MPI

On PITBULL we have installed the Intel compilers with some wrappers (depending on
the loaded MPI module), in order to compile parallel programs using MPI. In addition
the GCC is installed for convenience, although we recommend using the Intel compiler.
The following table shows the names of the MPI wrapper procedures for the Intel
compilers as well as the names of compilers themselves. The wrappers build up the MPI
environment for your compilation task, such that we recommend the use of the wrappers
instead of the compilers themselves.

language compiler Intel MPI Wrapper | Bullx MPI Wrapper
Fortran ifort mpiifort mpif90

90/95/2003

Fortran 77 ifort mpiifort mpif77

C++ icpe mpiicpc mpic++

C icc mpiicc mpicc

Table 2.3: MPI compiler wrapper overview for Intel compiler

In the following table we present some useful compiler options that are commonly used

for the Intel compiler:

option description

—openmp Enables the parallelizer to generate multi-threaded code based
on the OpenMP directives

—g Creates debugging information in the object files. This is
necessary if you want to debug your program

—0[0-3] Sets the optimization level

—L A path can be given in which the linker searches for libraries

-D Defines a macro

—U Undefines a macro

-1 Allows to add further directories to the include file search path

—S0X Stores useful information like compiler version, options used etc.
in the executable

—ipo Inter-procedural optimization

—xAVX or Indicates the processor for which code is created

—xCORE-AVX2

—help Gives a long list of quite a big amount of options

Table 2.4: Intel compiler options

2.2.1 Compilation Examples

Compile an MPI program in Fortran using Intel compiler and Intel MPI

bash$ module add intel intelmpi
bash$ mpiifort —02 —xCORE—AVX2 —o mpi_prog program.f90

Compile a hybrid MPI/OpenMP program using the Intel compiler and Bullx MPI:

bash$ module add intel bullxmpi
bash$ mpif90 —openmp —02 —xCORE—AVX2 —o0 mpi_omp_prog program.f90




2.2.2 Recommendations
Intel Compiler

Using the compiler option -xCORE-AVX2 resp. —-xHost causes the Intel compiler to use
full AVX2 support/vectorization (with FMA instructions) which might results in binaries
that do not produce MPI decomposition independent results. Switching to -xAVX should
solve this issue but result in up to 15% slower runtime.

MPI

The Bullx-MPI showed at least for the benchmarks of the HLRE-3 procurement a worse
performance compared to Intel-MPI. Nevertheless, this picture might change for the MIS-
TRAL cluster, since the network configuration will be different.



Chapter 3

Batch System - SLURM

3.1 SLURM Overview

SLURM is the Batch System (Workload Manager) used on PITBULL cluster. SLURM
(Simple Linux Utility for Resource Management) is a free open-source resource manager
and scheduler. It is a modern, extensible batch system that is widely deployed around the
world on clusters of various sizes. A SLURM installation consists of several programs/user
commands and daemons which are shown in Table [3.1] and Figure 3.1]

daemon description

control daemon responsible for monitoring of available resources and scheduling
(slurmctld) of batch jobs, it is running on admin nodes as HA resource
database daemon accessing and managing the MySQL database which stores all
(slurmdbd) the information about users, jobs and accounting data

slurm daemon functionality of the batch system and resource management, it
(slurmd) is running on each compute node

step daemon a job step manager spawned by slurmd to guide the user
(slurmstepd) processes

Table 3.1: Overview on SLURM components

SLURM manages the compute and pre/postprocessing nodes as its main resource of the
cluster. Several nodes are grouped together into partitions, which might overlap, i.e. one
node might be contained in several partitions. Compared to LoadLeveler on BLIZZARD,
partitions are the equivalent of classes, hence partitions are the main concept for users to
start jobs on the PITBULL cluster.
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Figure 3.1: SLURM daemons and their interaction

3.2 SLURM Partitions

In SLURM multiple nodes can be grouped into partitions which are sets of nodes with
associated limits for wall-clock time, job size, etc. These limits are hard-limits for the
jobs and can not be overruled. Jobs are the allocations of resources by the users in order
to execute tasks on the cluster for a specified period of time. Furthermore, the concept
of jobsteps is used by SLURM to describe a set of different tasks within the job. One
can imagine jobsteps as smaller allocations or jobs within the job, which can be executed
sequentially or in parallel during the main job allocation. The following table shows the
partitions on PITBULL, the configured limits and default values:
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e max number running/submitted jobs per user
e node usage

partition limit value
compute (default) e max wall-clock time for each job 30 minutes
e min/max number of nodes per job 1 / 18 nodes

3 / unlimited jobs
exclusive

e max number running/submitted jobs per user
e nodes available

nightly e max wall-clock time for each job 8 hours
e min/max number of nodes per job 1 / 18 nodes
e max number running/submitted jobs per user | 3 / unlimited jobs
e node usage exclusive
e jobs start at 08:00pm from Monday to Friday
(plus weekend all day)
shared e max wall-clock time for each job 8 hours
e min/max number of nodes per job 1 /1 node
e max number running/submitted jobs per user | 3 / unlimited jobs
e max memory per CPU 2.5 GByte
e node usage shared
gpu e max wall-clock time for each job 8 hours
e min/max number of nodes per job 1 / 1 node

3 / unlimited jobs
btg0

Table 3.2: Overview on SLURM partitions for PITBULL

3.3 Job Environment

On the compute nodes the whole shell environment is passed to the jobs during submission.
With some options of the allocation commands, users can change this default behaviour.
The users can load modules and prepare the desired environment before job submission,
and then this environment will be passed to the jobs that will be submitted. Of course, a
good practice is to include module commands inside the job-scripts, in order to have full
control of the environment of the jobs.

3.4 Accounting

The main policies concerning the batch model and accounting that are applied on PIT-

BULL:

e Job scheduling according to priorities. The jobs with the highest priorities will be

scheduled next.

e Backfilling scheduling algorithm. The scheduler checks the queue and may schedule
jobs with lower priorities that can fit in the gap created by freeing resources for the
next highest priority jobs.

e For each project a SLURM account is created where the users belong to. Each user

might use the contingent from several projects that he belongs to.

e Users can submit jobs even when granted shares are already used - this result in a
low priority, but the job might start when the system is empty.

11




Chapter 4

SLURM Usage

This

chapter serves as an overview of user commands provided by SLURM and how

users should use the SLURM batch system in order to run jobs on PITBULL. For a
comparison to LoadLeveler commands see http://slurm.schedmd. com/rosetta.pdf| or
read the more detailed description of each command’s manpage. A concise cheat sheet
for SLURM can be downloaded here: http://slurm.schedmd.com/pdfs/summary.pdf

4.1

SLURM Commands

SLURM offers a variety of user commands for all the necessary actions concerning the

jobs.

With these commands the users have a rich interface to allocate resources, query

job status, control jobs, manage accounting information and to simplify their work with
some utility commands. For examples how to use these command, see Chapter [4.5

sinfo

squeue

sbatch

scancel

salloc

show information about all partitions and nodes managed by SLURM as well as
about general system state. It has a wide variety of filtering, sorting, and formatting
options.

query the list of pending and running jobs. By default it reports the list of pending
jobs sorted by priority and the list of running jobs sorted separately according to the
job priority. The most relevant job states are running (R), pending (PD), completing
(CG), completed (CD) and cancelled (CA). The TIME field shows the actual job
execution time. The NODELIST (REASON) field indicates on which nodes the job
is running or the reason why the job is pending. Typical reasons for pending jobs
are waiting for resources to become available (Resources) and queuing behind a job
with higher priority (Priority).

submit a batch script. The script will be executed on the first node of the allocation.
The working directory coincides with the working directory of the sbatch directory.
Within the script one or multiple srun commands can be used to create job steps
and execute parallel applications.

cancel a pending or running job or job step. It can also be used to send an arbitrary
signal to all processes associated with a running job or job step.

request interactive jobs/allocations. When the job is started a shell (or other pro-
gram specified on the command line) is started on the submission host (login node).
From this shell you should use srun to interactively start a parallel applications.
The allocation is released when the user exits the shell.

12
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srun

scontrol

smap

sprio

sshare

sstat

sview

sacct

sacctmgr

initiate parallel job steps within a job or start an interactive job.

(primarily used by the administrators) provides some functionality for the users to
manage jobs or get some information about the system configuration such as nodes,
partitions, jobs, and configurations.

graphically shows the state of the partitions and nodes using a curses interface.

query job priorities.

retrieve fair-share information for each account the user belongs to.

query status information related to CPU, task, node, RSS and virtual memory about
a running job.

graphical user interface to get state information for jobs, partitions, and nodes.

retrieve accounting information about jobs and job steps. For completed jobs sacct
queries the accounting database.

(primarily used by the administrators) query information about accounts and other
accounting information.

4.2 Batch Jobs

Users submit batch applications (usually shell scripts) using the sbatch command. In the
job scripts, in order to define the sbatch parameters #SBATCH directives must be used.
The script is executed on the first compute node in the allocation. To execute parallel
MPI tasks users call srun within their script. With srun users can also create job-steps. A
job step can allocate the whole or a subset of the already allocated resources from sbatch.
With these commands SLURM offers a mechanism to allocate resources for a certain
walltime and then run many parallel jobs in that frame. The following table describes
the most common or required allocation options that can be defined in a job script:
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#SBATCH option

default value

description

——nodes=<number>

1

Number of nodes for the allocation

——ntasks=<number>

1

Number of tasks (MPI processes). Can
be omitted if ——nodes and
——ntasks-per-node are given

——ntasks-per-node=<num>

Number of tasks per node. If keyword
omitted the default value is used, but
there are still 48 CPUs available per
node for current allocation (if not
shared)

——cpus-per-task=<num>

Number of threads (logical CPUs) per
task. Used for OpenMP or hybrid jobs

——output=<path>

slurm-
<jobID>.out

Path to the file for the standard
output

——error=<path>

slurm-
<jobID>.out

Path to the file for the standard error

——time=<walltime> partition Requested walltime limit for the job
dependent
——partition=<name> compute Partition to run the job
——mail-user=<email> username Email address for notifications
——mail-type=<mode> NONE Event types for email notifications
——job-name=<jobname> jobscript’s Job name
name
——account=<projectaccount> | none Project that should be charged

Table 4.1: SLURM sbatch options

Multiple srun calls can be placed in a single batch script.

Options such as --nodes,

--ntasks and --ntasks-per-node are taken from the sbatch arguments but can be
overwritten for each srun invocation.
Remind the difference between options for selection, allocation and distribution in
SLURM. Selection and allocation works with sbatch, but task distribution and binding
should directly be specified with srun (within an sbatch-script). The following steps give
an overview, for details see the further documentation below.

1. Resource Selection, e.g.

e #SBATCH --nodes=2

e #SBATCH --sockets-per-node=2
e #SBATCH --cores-per-socket=12

2. Resource Allocation, e.g.

e #SBATCH --ntasks=12

e #SBATCH --ntasks-per-node=6
e #SBATCH --ntasks-per-socket=3
o #SBATCH --cpus-per-task=8

3. Start the application relying on the sbatch options only. Task binding and distri-

bution with srun, e.g.
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srun --cpu_bind=cores --distribution=block:cyclic <my_binary>

4. Start the application using only parts of the allocated resources, one needs to give
again all relevant allocation options to srun (like --ntasks or --ntasks-per-node),

e.g.

srun --ntasks=2 --ntasks-per-node=1 --cpu_bind=cores \
--distribution=block:cyclic <my_binary>

The job script is submitted using:

bash$ sbatch [OPTIONS]| <jobscript>

On success, sbatch writes the job ID to standard out. In case some allocation options are
defined in both command-line and inside the job-script, then the options that were given
as arguments in the command-line will be used and the options in the job- script will be
ignored.

CAUTION

On the PITBULL system the setting of -A resp. --account is necessary to submit a
job, otherwise submission will be rejected. You can query the accounts for which job
submission is allowed using the command:

bash$ sacctmgr list assoc format=account,qos,MaxJobs user=$§USER

4.2.1 Hyper-Threading (HT)

Similar to the IBM Power6 used in BLIZZARD, the Haswell processors deployed in PIT-
BULL offer the possibility of Simultaneous Multithreading (SMT) in the form of the Intel
Hyper-Threading (HT) Technology. With HT enabled each (physical) processor core can
execute two threads or tasks simultaneously. The operating system thus lists a total of
48 logical cpus or Hardware Threads (HWT). Therefore, a maximum of 48 processes can
be executed on each compute node without overbooking.

Each compute node on PITBULL consists of two Intel Xeon E5-2680 v3 processors,
located on socket zero and one, with 12 physical cores each. These cores are numbered
0 to 23 and the hardware threads are numbered 24 to 47. Figure depicts a node
schematically and illustrates the naming convention.

On PITBULL we enabled HT on each compute node and SLURM always uses the op-
tion -—threads-per-core=2 implicitly, such that the user is urged to bind the tasks/threads
in an appropriate way. In Section there are examples (commands and job scripts)
on how to use HT or not.
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Figure 4.1: Schematic illustration of btc compute nodes

4.2.2 Frequency Scaling

The Intel Haswell processor allows for CPU frequency scaling which in general enables the

operating system to scale the CPU frequency up or down in order to save power. CPU

frequencies can be scaled automatically depending on the system load or manually by

userspace programs. This is done via power schemes for the CPU - so called governors.
Only one may be active at a time. The default governor is "ondemand” which allows the
operating system to scale down the CPU frequency on the compute nodes to 1.2GHz if

they are in idle state. The user can set the governor to ”userspace” in order to allow for
different CPU frequencies. Therefore the batch job needs to define the desired behaviour

Q_REQ or via the srun option --cpu-freq.

via the environmental variable SLURM_CPU_FRE

Possible values are
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e export SLURM_CPU_FREQ_REQ=2500000 to set a fixed frequency of 2.5GHz; other
allowed frequencies are 1.2, 1.3, ..., 2.5 GHz

e export SLURM_CPU_FREQ_REQ=ondemand to enable automatically frequency scaling
depending on the workload

By default srun configures all CPUs to run at fixed 2.5GHz in order to get similar wallclock
runtime between different jobs if no options (or the binaries) are changed.

4.2.3 Job Script Examples
Serial job

#!/bin/bash

#SBATCH ——job—name=my_job # Specify job name
#SBATCH ——partition=shared # Specify partition name
#SBATCH ——ntasks=1 # Specify max. number of tasks
# to be invoked
#SBATCH ——mem=<MB> # Specify real memory required
#SBATCH ——time=00:30:00 # Set a limit on the total run time
#SBATCH ——mail—type=FAIL # Notify user by email in case of
# job failure
#SBATCH ——mail—user=you@email # Set your e—mail address
#SBATCH ——account=x12345 # Charge resources on this
# project account

# execute serial programs, e.g.
cdo <operator> <ifile> <ofile>

CAUTION

The shared partition has a limit of 2560MB memory per CPU, if your serial job needs
more memory you have to increase the number of --ntasks although you might not use
all these CPUs.

OpenMP job

#!/bin /bash

#SBATCH ——job—name=my_job # Specify job name
#SBATCH ——partition=shared # Specify partition name
#SBATCH ——ntasks=1 # Specify max. number of tasks

# to be invoked
#SBATCH ——cpus—per—task=8 # Specify number of CPUs per task
#SBATCH ——time=00:30:00 # Set a limit on the total run time
#SBATCH ——account=x12345 # Charge resources on this

# project account

# bind your OpenMP threads

export OMP_NUM_THREADS=8

export KMP_AFFINITY =granularity=thread,compact,1
export KMP_STACKSIZE=64M
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# execute OpenMP programs, e.g.
cdo —P 8 <operator> <ifile> <ofile>

CAUTION

All nodes in the system are able to use HyperThreading, i.e. the option ——threads-per-core=2
is set by default. Hence, one needs to specify the value of --cpus-per-task as multiple

of HyperThreads. Whether HT is used or not is defined via the envVar KMP_AFFINITY,

see [4.3] for details.

MPI job

#!/bin/bash

#SBATCH ——job—name=my_job # Specify job name
#SBATCH ——partition=compute # Specify partition name
#SBATCH ——nodes=4 # Specify number of nodes
#SBATCH ——ntasks—per—node=24 # Specify number of tasks on each node
#SBATCH ——cpus—per—task=2 # use 2 CPUs per task in order
# to not use HyperThreading
#SBATCH ——time=00:30:00 # Set a limit on the total run time
#SBATCH ——account=x12345 # Charge resources on this
# project account

# Run MPI parallel program using Intel MPI
module load intelmpi

export I MPI_ PMI_LIBRARY=/usr/lib64/libpmi.so

srun —1 ——cpu_bind=verbose,cores ./myprog

#!/bin/bash

#SBATCH ——job—name=my_job # Specify job name
#SBATCH ——partition=compute # Specify partition name
#SBATCH ——nodes=4 # Specify number of nodes
#SBATCH ——ntasks—per—node=48 # Specify number of tasks on each node
#SBATCH ——time=00:30:00 # Set a limit on the total run time
#SBATCH ——account=x12345 # Charge resources on this
# project account

# Run MPI parallel program using Intel MPI
module load intelmpi

export I MPI_ PMI_LIBRARY=/usr/lib64/libpmi.so

srun —1 ——cpu_bind=verbose,threads ./myprog

Instead of specifying the choice to use HyperThreads or not explicitly via -——cpus-per-task
and --cpu_bind, one might also use the srun option -~hint=[no]lmultithread. The fol-
lowing example allocates one full node and uses 24 tasks without HyperThreads for the
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first program run and then 48 tasks using HyperThreads for the second run. Such a
procedure might be used in order to see whether an application takes benefits of the use
of HyperThreads or not.

#!/bin/bash

#SBATCH ——job—name=my_job # Specify job name
#SBATCH ——partition=compute # Specify partition name
#SBATCH ——nodes=1 # Specify number of nodes
#SBATCH ——time=00:30:00 # Set a limit on the total run time
#SBATCH ——account=x12345 # Charge resources on this

# project account

# Run MPI parallel program using Intel MPI
module load intelmpi

export I MPI_PMI_LIBRARY=/usr/lib64/libpmi.so

# first check how myprog performs without HyperThreads
srun —1 ——cpu_bind=verbose ——hint=nomultithread ——ntasks=24 ./myprog

# second check how myprog performs with HyperThreads
srun —1 ——cpu_bind=verbose ——hint=multithread ——ntasks=48 ./myprog

Hybrid MPI/OpenMP job

The first hybrid MPI/OpenMP job example will allocate 4 compute nodes for 1 hour.
The job will have 24 MPI tasks in total, 6 tasks per node and 4 OpenMP threads per
task. On each node 24 cores will be used (no HyperThreads are used).

#!/bin/bash

#SBATCH ——job—name=my_job # Specify job name
#SBATCH ——partition=compute # Specify partition name
#SBATCH ——nodes=4 # Specify number of nodes
#SBATCH ——ntasks—per—node=6 # Specify number of task on each node
#SBATCH ——cpus—per—task=8 # Allocate that many CPUs for HT
#SBATCH ——time=00:30:00 # Set a limit on the total run time
#SBATCH ——account=x12345 # Charge resources on this

# project account

# bind your OpenMP threads

export OMP_NUM_THREADS=4

export KMP_AFFINITY =granularity=core,compact,1
export KMP_STACKSIZE=64M

# Run MPI/OpenMP parallel program
module load intelmpi

export I MPI_PMI_LIBRARY=/usr/lib64/libpmi.so

srun —1 ——cpu_bind=verbose,cores ./myprog
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The second hybrid MPI/OpenMP job example will run on 2 compute nodes having 6
tasks per node and starting 8 threads per node using HyperThreading.

#!/bin/bash

#SBATCH ——job—name=my_job # Specify job name
#SBATCH ——partition=compute # Specify partition name
#SBATCH ——nodes=2 # Specify number of nodes
#SBATCH ——ntasks—per—node=6 # Specify number of tasks on each node
#SBATCH ——cpus—per—task=8 # Allocate that many CPUs for HT
#SBATCH ——time=00:30:00 # Set a limit on the total run time
#SBATCH ——account=x12345 # Charge resources on this

# project account

# bind your OpenMP threads

export OMP_NUM_THREADS=8

export KMP_AFFINITY =granularity=thread,compact,1
export KMP_STACKSIZE=64M

# Run MPI/OpenMP parallel program
module load intelmpi

export I MPI_ PMI_LIBRARY=/usr/lib64/libpmi.so

srun —1 ——cpu_bind=verbose,threads ./myprog

4.2.4 Job Steps

Job steps can be thought of as small allocations or jobs inside the current job/allocation.
Each call of srun creates a job-step which implies that one job/allocation given via sbatch
can have one or several job steps executed in parallel or sequentially. Instead of submitting
many single-node jobs, the user might also use job steps inside a single job having multiple
nodes allocated. A job using job steps will be accounted for all the nodes of the allocation
regardless if all nodes are used for job steps or not.

The following example uses job steps to execute MPI programs in different job steps
sequentially after each other and also parallel to each other inside the same job allocation.
In total 4 nodes are allocated: the first 2 job steps run on all nodes after each other, while
the job steps 3 and 4 run in parallel each using only 2 nodes.

#!/bin/bash

#SBATCH ——nodes=4
#SBATCH ——time=00:30:00
#SBATCH ——account=x12345

# run 2 job steps after each other
srun —N4 ——ntasks—per—node=24 ——time=00:10:00 ./mpi_progl
srun —N4 ——ntasks—per—node=24 ——time=00:20:00 ./mpi_prog2

# run 2 job steps in parallel
srun —N1 —n24 ./mpi_prog3 &
srun —N3 ——ntasks—per—node=24 ./mpi_progd &
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4.2.5 Dependency Chains

SLURM supports dependency chains which are collections of batch jobs with defined
dependencies. Job dependencies can be defined using the --dependency argument of
sbatch.

#!/bin/bash

#SBATCH ——dependency=<type>

The available dependency types for job chains are
e after:<jobID> job starts when job with <jobID> begun execution
e afterany:<jobID> job starts when job with <jobID> terminates
e afterok:<jobID> job starts when job with <jobID> terminates successfully
e afternotok:<jobID> job starts when job with <jobID> terminates with failure

e singleton jobs starts when any previously job with the same job name and user
terminates

4.2.6 Job Arrays

SLURM supports job arrays which is a mechanism for submitting and managing collec-
tions of similar jobs quickly and easily. Job arrays are only supported for the sbatch
command and are defined using the option --array=<indices>. All jobs use the same
initial options (e.g. number of nodes, time limit, etc.), however since each part of the job
array has access to the SLURM_ARRAY_TASK_ID environment variable individual setting for
each job is possible. For example the following job submission

bash$ sbatch ——array=1—3 —N1 slurm_job_script.sh

will generate a job array containing three jobs. Assuming that the jobID reported by
sbatch is 42, then the parts of the array will have the following environment variables set:

# array index 1
SLURM_JOBID=42
SLURM_ARRAY_JOB_ID=42
SLURM_ARRAY_TASK_ID=1

# array index 2
SLURM_JOBID=43
SLURM_ARRAY_JOB_ID=42
SLURM_ARRAY_TASK_ID=2

# array index 3
SLURM_JOBID=44
SLURM_ARRAY_JOB_ID=42
SLURM_ARRAY_TASK_ID=3

Some additional options are available to specify the stdin, stdout, and stderr file names:
option %A will be replaced by the value of SLURM_ARRAY_JOB_ID and option %a will be
replaced by the value of SLURM_ARRAY_TASK_ID.
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The following example creates a job array of 42 jobs with indices 0-41. Each job will
run on a separate node with 24 tasks per node. Depending on the queuing situation, some
jobs may be running and some may be waiting in the queue. Each part of the job array
will execute the same binary but with different input files.

#!/bin/bash

#SBATCH ——nodes=1

#SBATCH ——output=prog—%A _%a.out
#SBATCH ——error=prog—%A_%a.err
#SBATCH ——time=00:30:00
#SBATCH ——array=0—41

#SBATCH ——account=x12345

srun ——ntasks—per—node=24 ./prog input_${SLURM_ARRAY _TASK_ID}.txt

4.2.7 MPMD

SLURM supports the MPMD (Multiple Program Multiple Data) execution model that
can be used for MPI applications, where multiple executables can have one common
MPI_COMM_WORLD communicator. In order to use MPMD the user has to set the srun
option ——multi-prog <filename>. This option expects a configuration text file as an
argument, in contrast to the SPMD (Single Program Multiple Data) case where srun has
to be given the executable.

Each line of the configuration file can have two or three possible fields separated by
space and the format is

<list of task ranks> <executable> [<possible arguments>|

In the first field a comma separated list of ranks for the MPI tasks that will be spawned
is defined. Possible values are integer numbers or ranges of numbers. The second field is
the path/name of the executable. And the third field is optional and defines the arguments
of the program.

Example

Listing 4.1: Jobscript frame for the coupled MPI-ESM model using 8 nodes

#!/bin /bash

#SBATCH ——nodes=8

#SBATCH ——ntasks—per—node=24
#SBATCH ——cpus—per—task=2
#SBATCH ——time=00:30:00
#SBATCH ——exclusive

#SBATCH ——account=x12345

# Atmosphere
ECHAM_NPROCA=6
ECHAM_NPROCB=16

# Ocean
MPIOM_NPROCX=12
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MPIOM_NPROCY=8

# Paths to executables
ECHAM_EXECUTABLE=../bin/echam6
MPIOM_EXECUTABLE=../bin/mpiom.x

# Derived values useful for running

(( ECHAM_NCPU = ECHAM_NPROCA x+ ECHAM_NPROCB ))
(( MPIOM_NCPU = MPIOM_NPROCX x MPIOM_NPROCY ))
(( NCPU = ECHAM_NCPU + MPIOM_NCPU ))

(( MPIOM_LAST_CPU = MPIOM_NCPU — 1))

(( ECHAM_LAST CPU = NCPU — 1))

# create MPMD configuration file

cat > mpmd.conf <<EOF

0—${MPIOM_LAST CPU} $MPIOM_EXECUTABLE
${MPIOM_NCPU}—-${ECHAM_LAST_CPU} SECHAM_EXECUTABLE
EOF

# Run MPMP parallel program using Intel MPI
module load intelmpi

export I MPI_PMI_LIBRARY=/usr/lib64/libpmi.so

srun —| ——cpu_bind=verbose,cores ——multi—prog mpmd.conf

4.3 Process and Thread Binding

4.3.1 OpenMP jobs

Thread binding is done via Intel runtime library using the KMP_AFFINITY environment
variable. The syntax is

KMP_AFFINITY=[<modifier>,...|<type>[,<permute>|[,<offset>]

with
e modifier

— verbose: giving detailed output on how binding was done

— granularity=core: reserve full physical cores (i.e. two logical CPUs) to run
threads on

— granularity=thread/fine: reserve logical CPUs / HyperThreads to run threads

e type

— compact: places the threads as close to each other as possible

— scatter: distributes the threads as evenly as possible across the entire allocation

e permute: controls which levels are most significant when sorting the machine topol-
ogy map, i.e.. 0=CPUs (default), 1=cores, 2=sockets/LLC

e offset: indicates the starting position for thread assignment
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For details please take a look at the Intel manuals or contact DKRZ Beratung. In most
cases use

export KMP_AFFINITY =granularity=core,compact,1

if you do not want to use HyperThreads and

export KMP_AFFINITY =granularity=thread,compact,1

if you intend to use HyperThreads. You might also try scatter instead of compact place-
ment to take benefit from bigger L3 cache.

4.3.2 MPI jobs

Process/task binding can be done via srun options --cpu_bind and --distribution.
The syntax is

——cpu_bind=[{quiet,verbose},|type
——distribution=<block|cyclic|arbitrary|plane=<options>|[:block|cyclic] >

with
e type:

— cores: bind to physical cores

— threads: bind to logical CPUs / HyperThreads

e first distribution method (before the ”:”) controls the distribution of resources across
nodes

e second (optional) distribution method (after the ”:”) controls the distribution of
resources across sockets within a node

For details please take a look at the manpage of srun or contact DKRZ Beratung. In
most cases use

srun ——cpu_bind=verbose,cores ——distribution=block:cyclic ./myapp

if you do not want to use HyperThreads and

srun ——cpu_bind=verbose,threads ——distribution=block:cyclic ./myapp

if you intend to use HyperThreads. You might also benefit from different task distributions
than block:cyclic.

4.3.3 Hybrid MPI/OpenMP jobs

In this case you need to combine the two binding methods mentioned above. Keep in
mind that we are using —--threads-per-core=2 throughout the cluster. Hence you need
to specify the amount of CPUs per process/task on the basis of HyperThreads even if
you do not intend to use HyperThreads! The following table gives an overview on how to
achieve correct binding using a full node

24




MPI intranode distribution of tasks =

srun —distribution=Dblock:block

srun —distribution=block:cyclic

no
()pi;%dfﬂ #SBATCH --tasks-per-node=24 #SBATCH --tasks-per-node=24
no #SBATCH --cpus-per-task=2 #SBATCH --cpus-per-task=2
srun --cpu_bind=cores srun --cpu_bind=cores
task0:cpu{0,24}, taskl:cpu{1,25}, ... task0:cpu{0,24}, taskl:cpu{12,36}, ...
no
;;gfn}dfﬂ #SBATCH --tasks-per-node=48 #SBATCH --tasks-per-node=48
srun --cpu_bind=threads srun --cpu_bind=threads
taskO:cpu0, taskl:cpu24, task2:cpul, task0:cpu0, taskl:cpul2, task2:cpul,
4
glpenl(;/lp #SBATCH --tasks-per-node=6 #SBATCH --tasks-per-node=6
ri;‘Ts’ #SBATCH --cpus-per—task=8 #SBATCH --cpus—per—task=8
no export OMP_NUM_THREADS=4 export OMP_NUM_THREADS=4
export KMP_AFFINITY=\ export KMP_AFFINITY=\
granularity=core,\ granularity=core,\
compact,1 compact,1
srun --cpu_bind=cores srun --cpu_bind=cores
task0:cpu{0,1,2,3,24,25,26,27}, task0:cpu{0,1,2,3,24,25,26,27},
taskl:cpu{4,5,6,7,28,29,30,31}, taskl:cpu{12,13,14,15,36,37,38,39},
taskO-threadO:cpu{0,24}, taskO-thread0:cpu{0,24},
taskO-threadl:cpu{1,25},... taskO-threadl:cpu{1,25},...
4
1(:)hpen1(;/IP #SBATCH --tasks-per-node=12 #SBATCH --tasks-per-node=12
H’;ea S #SBATCH --cpus-per-task=4 #SBATCH --cpus-per-task=4

export OMP_NUM_THREADS=4

export KMP_AFFINITY=\
granularity=tread,\
compact,1

srun --cpu_bind=threads

task0:cpu{0,1,24,25},
taskl:cpu{2,3,26,27},

task0-threadO:cpu0,
taskO-threadl:cpul,
taskO-thread2:cpu24,...

export OMP_NUM_THREADS=4

export KMP_AFFINITY=\
granularity=thread,\
compact,1

srun --cpu_bind=threads

task0:cpu{0,1,24,25},
taskl:cpu{12,13,36,37},

taskO-thread0:cpu0,
task0-threadl:cpul,
taskO-thread2:cpu24,...

4.4 Interactive Jobs

Interactive sessions can be allocated using the salloc command. The following command
for example will allocate 2 nodes for 30 minutes:

bash$ salloc ——nodes=2 ——time=00:30:00 ——account=x12345
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Once an allocation has been made, the salloc command will start a bash on the login
node where the submission was done. After a successful allocation the users can execute
srun from that shell to spawn interactively their applications. For example:

bash$ srun ——ntasks=4 ——ntasks—per—node=2 ——cpus—per—task=4 ./my_code

The interactive session is terminated by exiting the shell. In order to run commands
directly on the allocated compute nodes, the user has to use ssh to connect to the desired
nodes. For example:

bash$ salloc ——nodes=2 ——time=00:30:00 ——account=x12345
salloc : Granted job allocation 13258
bash$ squeue —j 13258
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

13258 compute  bash x123456 R 0:11 2 btc[2—3]
bash$ hostname # we are still on the login node
btc0

bash$ ssh btc3

user@btc3’s password:

user@btc3:”$ hostname

btc3

user@btc3:”$ exit

logout

Connection to btc3 closed.

bash$ exit

salloc : Relinquishing job allocation 13258
salloc: Job allocation 13258 has been revoked.

4.5 SLURM Command Examples

4.5.1 Job Control
Hold a job:

bash$ scontrol hold 4711

bash$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
4711 nightly tst_job b123456 PD 0:00 1 (JobHeldUser)

Release a job:

bash$ scontrol release 4711

bash$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
4711 nightly tst_job b123456 R 0:01 1 bte[7—11]

Cancel a job:

bash$ scancel 4711

4.5.2 Query Commands
Check the Queue:
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bash$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
13194  compute MR_2_01P k203059 PD 0:00 13 (PartitionTimeLimit)

13263 compute LR0014.r k208024 R 4:03 16 btc[2—17]

Check the Queue for one user:

bash$ squeue —u k208024
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
13263 compute LR0014.r k208024 R 4:03 16 btc[2—17]

Check partitions and nodes:

bash$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
computex  up 30:00 18 idle btc[2—19]

nightly ~ down  8:00:00 18 idle btc[2—19]

shared up  8:00:00 2 idle btc[18—19]

gpu up  8:00:00 1 idle btg0

Check one partition:

bash$ scontrol show partition nightly

PartitionName=nightly
AllocNodes=ALL AllowGroups=ALL Default=NO
Default Time=NONE DisableRootJobs=NO GraceTime=0 Hidden=NO
MaxNodes=UNLIMITED MaxTime=08:00:00 MinNodes=1 MaxCPUsPerNode=UNLIMITH
Nodes=btc[2—19]
Priority =1 RootOnly=NO ReqResv=NO Shared=EXCLUSIVE PreemptMode=OFF
State=DOWN TotalCPUs=864 TotalNodes=18 SelectTypeParameters=N/A
DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED

1D

Check one node:

bash$ scontrol show node btg0

NodeName=btg0 Arch=x86_64 CoresPerSocket=10
CPUAlloc=0 CPUErr=0 CPUTot=20 CPULoad=0.00 Features=(null)
Gres=gpu:2
NodeAddr=btg0 NodeHostName=btg0
OS=Linux RealMemory=128000 AllocMem=0 Sockets=2 Boards=1
State=IDLE ThreadsPerCore=1 TmpDisk=0 Weight=1
BootTime=2015—-03—02T18:04:57 SlurmdStartTime=2015—03—02T18:05:28
CurrentWatts=149 LowestJoules=150 ConsumedJoules=37532742
ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

Check the shares:

bash$ sshare
Account  User Raw Shares Norm Shares Raw Usage Effectv Usage FairShare

x12345 b123456 parent  0.020501 216 0.000000 0.999984
y67890 b123456 parent  0.005390 46128362 0.099114 0.000003

Check the priorities:

bash$ sprio
JOBID PRIORITY AGE FAIRSHARE PARTITION QOS
13194 20991 991 0 10000 10000
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4.5.3 Accounting Commands

Check user association:

bash$ sacctmgr show assoc where user=b123456
Cluster Account User
bullp x12345  b123456
bullp y67890  b123456
bullp 724680  b123456

Check old jobs history:

bash$ sacct —X —u b123456
JobID JobName Partition Account AllocCPUS State ExitCode

13219  test.sh  compute x12345 96 COMPLETED 0:0
13235  wrf_job compute x12345 32 FAILED 174:0
13258 bash  compute x12345 96 COMPLETED 0:0

Check old jobs with different format and specified time frame:

bash$ sacct —X —u b123456 ——format="jobid,nnodes,nodelist,state,exit”
—S 2015—-01-01 —E 2015—31—-01T23:59:59
JobID NNodes NodeList State ExitCode
2 btc[2—3] COMPLETED 0:0
13221 1 btc2 FAILED 174:0
1 btc2 FAILED 174:0
1 btc4 FAILED 174:0
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