DKRZ

DEUTSCHES
KLIMARECHENZENTRUM

MISTRAL User’s Manual
Phase2 Version

Support:
beratung@dkrz.de

2016-08-01

Contents

Cluster Information

1.1 Introduction
1.2 Cluster Nodes
1.3 Data Management - Filesystems
1.4 Access tothe Cluster
1.4.1 Login. o o
1.4.2 Password e
1.4.3 Login Shell
Software Environment
2.1 Modules e
2.1.1 The Available Modules
2.1.2 Using the Module Command
2.2 Compiler and MPI o
2.2.1 Compilation Examples,
2.2.2 Recommendations.

Batch System - SLURM

3.1 SLURM Overview e e e e e e
3.2 SLURM Partitions
3.3 Job Limits - QoS
3.4 Priorities and Accounting
3.5 Job Environment o

SLURM Usage

4.1 SLURM Command Overview,
4.2 Allocation Commands e
4.2.1 Interactive Jobs
4.2.2 Spawning Command L0
4.2.3 BatchJobs
4.3 Job Script Examples
4.4 Adapting job-scripts for MISTRAL phase2
4.5 Advanced SLURM Features
4.5.1 Hyper-Threading (HT)
4.5.2 Process and Thread Binding
4.5.3 MPMD e
4.5.4 Job Steps
4.5.5 Dependency Chains
4.5.6 Job Arrays.
4.6 SLURM Command Examples
4.6.1 Query Commandso

4.6.2 Job Control
4.6.3 Accounting Commands

5 Data Processing

Chapter 1

Cluster Information

1.1 Introduction

MISTRAL, the High Performance Computing system for Earth system research (HLRE-
3), is DKRZ’s first petascale supercomputer. The HPC system has a peak performance
of 3.14 PetaFLOPS and consists of approx. 3,000 compute nodes, 100,000 compute cores,
240 Terabytes of memory, and 54 Petabytes of disk. For access to MISTRAL you need
to be a member in at least one active HLRE project, have a valid user account, and
accept DKRZ’s ” Guidelines for the use of information-processing systems of the Deutsches
Klimarechenzentrum GmbH (DKRZ)”.

1.2 Cluster Nodes

The MISTRAL Phase 1 system was brought into operation in July 2015 and consists of
approx. 1500 nodes. The compute nodes are housed in bullx B700 DLC (Direct Liquid
Cooling) blade systems with two nodes forming one blade. Each node has two sockets,
equipped with an Intel Xeon E5-2680 v3 12-core processor (Haswell) sharing 30 MiB
L3 cache each. The processor clock-rate is 2.5 GHz. The MISTRAL phase 2 system is
operational since July 2016 and adds another 1,434 nodes. The phase 2 nodes differ from
those of phase 1 in the CPU type only. The new nodes use 2 Intel Xeon CPU E5-2695
v4 (aka Broadwell) CPUs running at 2.1 GHz, and each socket has 18 cores and 45MiB
L3 cache. Thus, 24 physical cores per node are available on phase 1 and 36 on phase 2
respectively. Due to active Hyper-Threading, the operating system recognizes two logical
CPUs per physical core. The aggregated main memory is 240 TB. The parallel file system
Lustre provides 54 PB of usable disk space. The peak performance of the system is 3.14
PFLOPS/s.

Different kinds of nodes are available to users: 6 login nodes, 5 nodes for interactive
data processing and analysis, approx. 3000 compute nodes for running scientific models,
32 fat memory nodes for pre- and postprocessing of data, and 12 nodes for running
advanced visualization or GPGPU applications. See Table 1.1 for a listing of the specifics
of different node types.

Broadwell @
2.1GHz

type (nodes) hostname CPU GPUs memory
login (6) mlogin[100-105] | 2x12 core Intel | none 256 GB
mistral.dkrz.de Haswell @
2.5GHz
interactive m[11550-11554] 2x12 core Intel | none 256 GB
prepost (5) Haswell @
mistralpp. dkrz. de 2.5GHz
compute (1404) | m[10000-11367, 2x12 core Intel | none 64 GB
11404-11421, Haswell @
11560-11577] 2.5GHz
compute (110) m[11368-11403, 2x12 core Intel | none 128 GB
11422, 11431, Haswell @
11440-11511] 2.5GHz
prepost (32) m[11512-11543] 2x12 core Intel | none 256 GB
Haswell @
2.5GHz
visual /gpgpu mg[100-111] 2x12 core Intel | Nvidia Tesla | 256 GB
(12) Haswell @ K80 2x
2.5GHz GK110BGL
compute2 (1116) | m[20000-21115] 2x18 core Intel | none 64 GB
Broadwell @
2.1GHz
compute2 (270) | m[21116-21385] 2x18 core Intel | none 128 GB
Broadwell @
2.1GHz
compute?2 (48) m[21386-21433] 2x18 core Intel | none 256 GB

The Operating System on the Mistral cluster is Red Hat Enterprise Linux release 6.4
The batch system and workload manager is SLURM. All compute, pre-
/postprocessing, and visualization nodes are integrated in one FDR InfinBand (IB) fabric
with three Mellanox SX6536 director switches and fat tree topology with a blocking factor
of 1:2:2. The measured bandwidth between two arbitrary compute nodes is 5.9 GByte/s
with a latency of 2.7 us. A scheme of the Infiniband topology is given in Picture 1.1,

(Santiago).

Table 1.1: MISTRAL node configuration

illustrating the blocking factors depending on which nodes are used for a specific job.

>

DKRZ HLRE-3 supercomputer MISTRAL

SX6536 director switch

B R i e e O s i B
e B BB B o B i v

E
I
=
[
5
[=
[2=
b=
I
I

I

I

I

I

I
I
I

\

3x 45("FDR:§ét,djgectb&switch

bullx DLCB700 bullx DLCB700 bullx DLCB700 bullx DLCB700 bullx DLCB700

FDR switch FDR switch FDRswitch FDR switch H FDRswitch
36 ports 36 ports 36 ports 36 ports 168 bU"X DLC B7OO ChaSSIS 36 ports

|, Infinjlsand 43 FOR | = 3024 nOdes |, Infinjband 4 FOR |

Infinjband 4X FOR Infinjband 4X FOR |, Infiniband 4% FOR

00000
18
compute
nodes

00000
18
compute
nodes

=
B
B
S
5}
=
=
=1
o
I
~
1=
E

bullxB720 DLC compute node

S
(=}
o
|
=1
=
I
~
>
=

bullxB720 DLC
bullxB720 DLC
bullxB720 DLC con
bullxB720 DLC
bullxB720 DLC

bullxB720

Figure 1.1: DKRZ mistral IB topology

1.3 Data Management - Filesystems

On MISTRAL, we provide the Lustre parallel filesystem version 2.5. Users have access to
three different storage spaces: HOME, WORK, and SCRATCH. Each storage area has a

specific purpose as described below.

HOME is the file system where users’ sessions start upon login to MISTRAL. It is backed
up and should be used to store shell setup files, source codes, scripts, and important
files.

WORK is a project space available through the allocations process and shared between all
users of a project. It provides disk space for large amounts of data, but it is not
backed up. It can be used e.g. for writing raw model output and processing of data
that is accessible to all project members.

SCRATCH is provided for temporary storage and processing of large data. To prevent the file
system from overflowing, old data is automatically deleted. The granted retention

period is 14 days.

The Lustre file system is available on all nodes (login and compute), so you can use them
during interactive sessions and in batch jobs. The table below provides further details on
the different storage spaces.

File HOME WORK SCRATCH
System
path /pf/[a,b,g,k,m,u]/<userid> | /work/<project> | /scratch/[a,b,g,k,m,u]/<userid>|
envVar $HOME
description| e Assigned to the user e Assigned to e Assigned to user account
account project account e Temporary storage and
e Storage of personal e Interim storage | processing of large data sets
settings files, source codes | of output from
and scripts running
applications and
frequently
accessed data
quota 24 GB according to 15 TB
annual project
allocation
backup yes, please contact DKRZ | no no
user’s consultancy to
restore files deleted by
mistake
automatic | no no yes
data
deletion
data life | until user account deletion | 1 month after 14 days since the last file
time project access
expiration

Table 1.2: MISTRAL file system configuration

1.4 Access to the Cluster

The High Performance Computing system MISTRAL can be only accessed via Secure
Shell (SSH) network protocol. For the file transfer between different hosts, SSH provides
SCP and SFTP.

1.4.1 Login

You can log into MISTRAL with the following ssh command, replacing <userid> with
your username:

bash$ ssh <userid>@mistral.dkrz.de

After having logged into MISTRAL, you will find yourself on one of the six login
nodes mlogin[100-105]. The login nodes serve as the front ends to the compute nodes of
the HPC cluster. They are intended for the editing and compilation of source code files,
as well as for submitting, monitoring and cancelling of batch jobs. They can also be used
for none time- and memory-intensive serial processing tasks. The routine data analysis
and visualization, however, have to be performed on the interactive pre-/post-processing
system mistralpp.dkrz.de or on prepost/visualization nodes. For interactive testing
and debugging of parallel programs, you can use SLURM salloc command to allocate
the required number of nodes.

1.4.2 Password

All DKRZ systems are managed by the LDAP protocol. The password can be changed
through the DKRZ online services. A user defined password must contain at least eight
non blank characters and must be a combination of upper and lower-case letters, numbers

and special characters. In case you do not remember your password please contact DKRZ
user’s consultancy. Members of MPI and UniHH/CEN should contact CIS/CEN-IT.

1.4.3 Login Shell

The default login shell for new DKRZ users is bash. You can change your login shell
to tesh or ksh using the DKRZ online services. The settings that you would like to
use every time you log in can be put into special shell setup files. A login bash shell
looks for .bash_profile, .bash_login or .profile in your home directory and executes
commands from the first file found. A non-login bash shell or bash subshell reads .bashrc
file. Tcsh always reads and executes .cshrc file. If tesh is invoked as the login shell, the
file .login is sourced additionally. The typical tasks and settings that can be put in the
shell setup files are for example:

e Creation of a custom prompt

Modification of search path for external commands and programs

Definition of environment variables needed by programs or scripts

Definition of aliases

Execution of commands (e.g. 'module load <modname>/<version>’)

Chapter 2

Software Environment

2.1 Modules

To cover the software needs of the DKRZ users and to maintain different software versions,
DKRZ uses the module environment. Loading a module adapts your environment vari-
ables to give you access to a specific set of software and its dependencies. The modules are
not organized hierarchically, but they have internal consistency checks for dependencies
and can uniquely be identified with the naming convention <modname>/<modversion>.
Optionally, the version of the compiler that was used to build the software is also en-
coded in its name (for example all modules built with the same Intel compiler version are
labelled with e.g. *-intell4).

2.1.1 The Available Modules

Table 2.1 provides a quick reference to some module categories. The list of the avail-
able modules will steadily grow to cover the (general) software needs of the DKRZ users.
Upon building new software, the complete list of the available tools is dynamically up-
dated and it can be found at https://wuw.dkrz.de/Nutzerportal-en/doku/mistral/
softwarelist

type modules available
compiler intel: Intel compilers with front-ends for C, C++ and
Fortran

gcc: Gnu compiler suite

nag: NAG compiler

MPI intelmpi: Intel MPI

bullxmpi: Bullx-MPI with/without mellanox libraries
mvapich2: MVAPICH2 (an MPI-3 implementation)
openmpi: Open MPI

tools allinea-forge: Allinea DDT debugger and MAP profiler
cdo: command line Operators to manipulate and analyse
Climate and NWP model Data

ncl: NCAR Command Language

ncview: visual browser for netCDF format files
python: Python

Table 2.1: MISTRAL module overview

https://www.dkrz.de/Nutzerportal-en/doku/mistral/softwarelist
https://www.dkrz.de/Nutzerportal-en/doku/mistral/softwarelist

2.1.2 Using the Module Command

Users can load, unload and query modules through the module command. The most
important module sub-commands are listed in the table below.

command description

module avail Shows the list of all the available modules
module show Shows environment changes the modulefile
<modname>/<version> <modname>/<version> will cause if loaded
module add Loads a specific module. Default version is loaded if
<modname>/<version> the version is not given

module list Lists all modules currently loaded

module rm Unloads a module

<modname>/<version>

module purge Unloads all modules

module switch Replaces one module with another
<modname>/<version1>

<modname>/<version2>

Table 2.2: module command overview

Hint: if only the <modname> (i.e. without <modversion>) is supplied, the lexically
highest software version is loaded by default. If you want to make sure that the module
version is not changed within job chains, you must explicitely supply the <modversion>.

For all the details of the module command, please refer to the man page or execute
‘module --help’.

To use the module command in a script you can source one of the following files in
your script before any invocation of the module command:

in bash or ksh script
bash$ source /sw/rhel6—x64/etc/profile.mistral

in tcsh or csh script
csh$ source /sw/rhel6—x64/etc/csh.mistral

The 'module avail’ command provides up-to-date information on the installed software
and their versions. For a comprehensive list of software and tools available on MIS-
TRAL, please refer to the Software List at https://www.dkrz.de/Nutzerportal-en/
doku/mistral/softwarelist

2.2 Compiler and MPI

On MISTRAL, we provide the Intel, GCC (GNU Compiler Collection), NAG, and PGI
compilers and several Message Passing Interface (MPI) implementations: Bullx MPI with
and without Mellanox tools, Intel MPI, MVAPICH2, and OpenMPI. No compilers and
MPIs are loaded by default.

For most applications, we recommend to use the Intel compilers and Bullx MPI library
with Mellanox tools to achieve the optimal performance on MISTRAL. For some appli-
cations, running on a small number of nodes might achieve a slightly better performance
with the Intel compilers and Intel MPI.

Compilers and appropriate MPI libraries can be selected by loading the corresponding
module files, for example:

10

https://www.dkrz.de/Nutzerportal-en/doku/mistral/softwarelist
https://www.dkrz.de/Nutzerportal-en/doku/mistral/softwarelist

Use the latest versions of Intel compiler and Bullx MPI with Mellanox MXM + FCA tools
bash$ module load intel mxm fca bullxmpi_mlx

Use the latest versions of Intel compiler and Intel MPI
bash$ module load intel intelmpi

The following table shows the names of the MPI wrapper procedures for the Intel
compilers as well as the names of compilers themselves. The wrappers build up the MPI
environment for your compilation task such that we recommend the use of the wrappers
instead of the compilers themselves.

language compiler Intel MPI Wrapper | bullx MPI Wrapper
Fortran ifort mpiifort mpif90

90/95/2003

Fortran 77 ifort mpiifort mpif77

C++ icpe mpiicpc mpic++

C icc mpiicc mpicc

Table 2.3: MPI compiler wrappers overview for Intel compiler

The table below lists some useful compiler options that are commonly used for the Intel
compiler. For further information, please refer to the man pages of the compiler or
the comprehensive documentation on the Intel website https://software.intel.com/
en-us/intel-software-technical-documentation.

option description

—qopenmp Enables the parallelizer to generate multi-threaded code based
on the OpenMP directives

—g Creates debugging information in the object files. This is
necessary if you want to debug your program

—0[0-3] Sets the optimization level

—L<library path>| A path can be given in which the linker searches for libraries
-D Defines a macro

-U Undefines a macro

—I<include path> | Allows to add further directories to the include file search path

—S0X Stores useful information like the compiler version, options used
etc. in the executable

—ipo Inter-procedural optimization

—xAVX or Indicates the processor for which code is created

—xCORE-AVX2

—help Gives a long list of options

Table 2.4: Intel compiler options

2.2.1 Compilation Examples

Compile a hybrid MPI/OpenMP program using the Intel Fortran compiler and Bullx MPI
with MXM and FCA:

bash$ module add intel mxm fca bullxmpi_mlx
bash$ mpif90 —qopenmp —xCORE—AVX2 —fp—model source —o mpi_omp_prog program.f90

Compile an MPI program in Fortran using Intel Fortran compiler and Intel MPI:

11

https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-software-technical-documentation

bash$ module add intel intelmpi
bash$ mpiifort —02 —xCORE—AVX2 —fp—model source —o mpi_prog program.f90

2.2.2 Recommendations
Intel Compiler

Using either the compiler option ~xCORE-AVX2 causes the Intel compiler to use full AVX2
support /vectorization (with FMA instructions) which might result in binaries that do not
produce MPI decomposition independent results. Switching to -xAVX should solve this
issue, but it will result in up to 15% slower runtime.

bullxMPI

The bullx-MPI was used throughout for the benchmarks of the HLRE-3 procurement.
From BULL/ATOS point of view, a good environment will be to use bullxMPI_mlx with
MXM, i.e. load the specific environment before compiling

bash$ module add intel mxm/3.3.3002 fca/2.5.2393 bullxmpi_mlx/bullxmpimlx— 1.2.8.3
bash$ mpif90 —02 —xCORE—AVX2 —o mpi_prog program.fo0

One must respect the order of loading the modules: compiler, MXM/FCA and afterwards
bullx MPI. If the MXM/FCA environment is not loaded, one will use the bullx MPI
without MXM and FCA tools.

In order to use the MXM (Mellanox Messaging) to accelerate the underlying send /re-
ceive (or put/get) messages, the following variables have to be set:

export OMPI_MCA _pml=cm
export OMPI_MCA_mtl=mxm
export MXM_RDMA _PORTS=mlx5_0:1

Alternatively, the default OpenMPI behavior can be specified using:

export OMPI_MCA _pml=obl
export OMPI_MCA _mtl="mxm

Furthermore, FCA (Fabric Collectives Accelerations) accelerates the underlying col-
lective operations used by the MPI/PGAS languages. To use FCA, one must specify the
following variables:

export OMPI_MCA _coll="ghc # disable BULLs GHC algorithm for collectives
export OMPI_MCA _coll_fca_priority=95
export OMPI_MCA _coll_fca_enable=1

You will find the bullxMPI documentation by Atos at
https://www.dkrz.de/Nutzerportal-en/doku/mistral/manuals.

bullxMPI and OpenMPI

Unlimited stacksize might have negative influence on performance - better use real needed
amount, e.g.

ulimit —s 102400 # using bash

limit stacksize 102400 # using csh

12

https://www.dkrz.de/Nutzerportal-en/doku/mistral/manuals

In batch jobs, you will also have to propagate this setting from the job head node to all
other compute nodes when invoking srun, i.e.

srun ——propagate=STACK [any other options]

IntelMPI

A good starting point for MPI based tuning is the following setting which enforces shared
memory for MPI intranode communication and DAPL UD (user datagram) internode
communication:

export [MPI_FABRICS=shm:dapl

export | MPI_ FALLBACK=0

export [MPI_DAPL_UD=enable

export | MPI_DAPL_UD_PROVIDER=o0ofa—v2—mlx5_0—1u

Libraries

There is no module to set NetCDF paths for the user. If you need to specify such paths in
Makefiles or similar, please use the nc-config and nf-config tool to get the needed compiler
flags and libraries, e.g.

Get paths to netCDF include files
bash$ /sw/rhel6—x64/netcdf/netcdf c—4.3.2—gccd8/bin/nc—config ——cflags

—1I/sw/rhel6—x64/netcdf/netcdf_c—4.3.2—gccd8/include \
—I/sw/rhel6—x64/sys/libaecc—0.3.2—gcc48 /include \
—I/sw/rhel6—x64/hdf5/hdf5—1.8.14—threadsafe—gcc48 /include

Get options needed to link a C program to netCDF
bash$ /sw/rhel6—x64/netcdf/netcdf_c—4.3.2—gccd8 /bin/nc—config ——libs

—L/sw/rhel6—x64/netcdf/netcdf_c—4.3.2—gccd8/1ib '\
—WIL,—rpath,/sw/rhel6—x64 /netcdf/netedf_c—4.3.2—gccd8/1ib —Inetedf

Get paths to Fortran netCDF include files
bash$ /sw/rhel6—x64/netcdf/netcdf fortran—4.4.2—intel14/bin/nf—config ——ffags

—I/sw/rhel6—x64/netcdf/netcdf_fortran—4.4.2—intel14/include

Get options needed to link a Fortran program to netCDF
bash$ /sw/rhel6—x64/netcdf/netcdf fortran—4.4.2—intel14/bin/nf—config ——flibs

—L/sw/rhel6—x64/netcdf/netcdf_fortran—4.4.2—intel14/1ib —Inetcdff \
—WI,—rpath,/sw/rhel6—x64 /netcdf/netcdf_fortran—4.4.2—intel14/lib \
—L/sw/rhel6—x64 /netcdf/netedf_c—4.3.2—gecd8/1ib \
—WI,—rpath,/sw/rhel6—x64 /netcdf/netcdf_c—4.3.2—gccd8/1ib \
—L/sw/rhel6—x64 /hdf5 /hdf5—1.8.14—threadsafe—gccd8/1ib \
—WI,—rpath,/sw/rhel6—x64/hdf5/hdf5—1.8.14—threadsafe—gcc48/lib \
—L/sw/rhel6—x64/sys/libaecc—0.3.2—gccd8/lib \
—WI,—rpath,/sw/rhel6—x64/sys/libaec—0.3.2—gcc48/1ib \

—Inetcdf —lhdf5_hl —1hdf5 —lsz —lcurl -1z

13

Chapter 3

Batch System - SLURM

3.1 SLURM Overview

SLURM is the Batch System (Workload Manager) used on MISTRAL cluster. SLURM
(Simple Linux Utility for Resource Management) is a free open-source resource manager
and scheduler. It is a modern, extensible batch system that is widely deployed around the
world on clusters of various sizes. A SLURM installation consists of several programs/user
commands and daemons which are shown in Table 3.1 and Figure 3.1.

daemon description

control daemon Responsible for monitoring available resources and scheduling
(slurmctld) batch jobs. It is running on admin nodes as an HA resource.
database daemon Accessing and managing the MySQL database, which stores all
(slurmdbd) the information about users, jobs and accounting data.

slurm daemon Functionality of the batch system and resource management. It
(slurmd) is running on each compute node

step daemon A job step manager spawned by slurmd to guide the user
(slurmstepd) processes.

Table 3.1: Overview on SLURM components

SLURM manages the compute, pre-/post-processing and visualisation nodes as its main
resource of the cluster. Several nodes are grouped together into partitions, which might
overlap, i.e. one node might be contained in several partitions. Compared to LoadLeveler
on BLIZZARD, partitions are the equivalent of classes, hence the main concept for users
to start jobs on the MISTRAL cluster.

14

4+ slurmetld i
f [
4 slurmdbd «
"
U Admin nodes
sinfo
3
2 IEZN
c EXH
2
| slulr‘.md slurmd
R Computie node 1 Compute node 2
|
=
ﬁ slurmd slurmd
] Compute node n-1 Compute node n

Figure 3.1: SLURM daemons and their interaction

3.2 SLURM Partitions

In SLURM, multiple nodes can be grouped into partitions which are sets of nodes with
associated limits for wall-clock time, job size, etc. These limits are hard-limits for the
jobs and can not be overruled. The defined partitions can overlap, i.e. one node might
be contained in several partitions.

Jobs are the allocations of resources by the users in order to execute tasks on the
cluster for a specified period of time. Furthermore, the concept of jobsteps is used by
SLURM to describe a set of different tasks within the job. One can imagine jobsteps
as smaller allocations or jobs within the job, which can be executed sequentially or in
parallel during the main job allocation.

The SLURM sinfo command lists all partitions and nodes managed by SLURM on
MISTRAL as well as provides general information about the current status of the nodes:

bash$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

compute x up 8:00:00 13 downx m[10000,10278,...,11406]
compute up 8:00:00 14 mix m[10001,...,10036 —10041]
compute* up 8:00:00 81 alloc m[10042,,...,11332—-11345]
computex* up 8:00:00 1388 idle m{10002-10010,,...,11511]
prepost up 4:00:00 3 drainx m[11518,11532,11554]
prepost up 4:00:00 45 idle m[11512,...,11555 —11559]
shared up 7—00:00:00 1 downx m10000

shared up 7-00:00:00 14 mix m[10001,...,10048]

shared up 7—00:00:00 17 alloc m[10042,...,11332—11345]
shared up 7—00:00:00 68 idle m[10002,...,11296 —11331]
gpu up 4:00:00 11 idle mg[100—101,103—111]
miklip up 2-00:00:00) idle m[11419—-11422,11431]
compute?2 up 8:00:00 1000 alloc m[20000—20827,...,21395]
compute2 up 8:00:00 433 idle m[20828,...,21396 —21433]

15

For detailed information about all available partitions and their limits, use the SLURM
scontrol command as follows:

bash$ scontrol show partition

The following four partitions are currently defined on MISTRAL:

compute This partition consists of 1535 phasel compute nodes (equipped with Haswell CPUs)
and is intended for running parallel scientific applications. The compute nodes
allocated for a job are used exclusively and cannot be shared with other jobs.

compute2 This partition consists of 1434 phase2 compute nodes (equipped with Broadwell
CPUs) and is intended for running parallel scientific applications. The compute
nodes allocated for a job are used exclusively and cannot be shared with other jobs.

shared This partition is defined on 100 nodes and can be used to run small jobs not re-
quiring a whole node for the execution, so that one compute node can be shared
between different jobs. The partition is dedicated for execution of shared memory
applications parallelized with OpenMP or pthreads as well as for serial and parallel
data processing jobs.

prepost The prepost partition is made up of 32 large-memory nodes. It is dedicated for
memory intensive data processing jobs. Furthermore, interactive usage of nodes is
permitted on this partition. If over-subscription is explicitly requested by the user
using the "—share” option on job submission, resources can be shared with other
jobs.

gpu The 12 nodes in this partition are additionally equipped with Nvidia Tesla K80
GPUs and can be used for 3-dimensional data visualization or execution of applica-
tions ported to GPUs. The nodes in this partition will replace Halo cluster in the
future.

The limits configured for different partitions are listed in the table below.

partition compute/compute2 | prepost | shared gpu
MazxNodes 512 2 1 2
MaxTime 8 hours 12 hours | 7 days 12 hours
Shared exclusive yes yes yes
MaxMemPerCPU | node limit 5 GByte | 1.25 GByte | 5 GByte

Table 3.2: Overview on SLURM partitions for MISTRAL

Beginning with September 1st 2016, all jobs on MISTRAL have to be assigned to a
partition - there is no longer a default partition available. Choosing the partition can be
done in various ways

e cnvironment variable

export SBATCH_PARTITION=<partitionname>

e batch script option

#SBATCH [—p|——partition=]<partitionname>

e command line option

16

sbatch [—p|——partition=]<partitionname>

Note that an environment variable will override any matching option set in a batch script,
and command line option will override any matching environment variable.

3.3 Job Limits - QoS

As stated above, the partitions have several hard-limits that put an upper limit for the
jobs on the wall-clock or other constraints. However, the actual job limits are enforced by
the limits specified in both partitions and so called Quality-of-Services (QoS), meaning
that using a special QoS the user might weaken the partition limits.

These QoS features play an important role to define the job priorities. By defining
some QoS properties, the possible priorities can be modified in order to, e.g., enable earlier
starttime of the jobs. In the following, we present the current list with the configured
Quality-of-Services. Users are kindly asked to contact us should they have any demand
for creating a new QoS feature.

QoS express
description | higher priority
limits 4 nodes, 20 min wallclock

Table 3.3: Overview on SLURM QoS for MISTRAL

3.4 Priorities and Accounting

The main policies concerning the batch model and accounting that are applied on MIS-

TRAL are also defined via SLURM.

e SLURM schedules jobs according to their priorities. The jobs with the highest
priorities will be scheduled next.

e Usage of backfilling scheduling algorithm: the SLURM scheduler checks the queue
and may schedule jobs with lower priorities that can fit in the gap created by freeing
resources for the next highest priority jobs.

e For each project, a SLURM account is created where the users belong to. Each user
might use the contingent from several projects that he belongs to.

e Users can submit jobs even when granted shares are already used - this results in a
low priority, but the job might start when the system is empty.

SLURM has a simple but well defined priority mechanism that allows to define different
weighting models - the so called Multi-factor Job Priority plugin of SLURM. The actual
priority for batch jobs on MISTRAL is based on a weighted sum of the following factors:

e age factor € [0, 1] with 1 when age is more than PriorityMaxAge (0 day, 12 hours)

e FairShare_factor € [0, 1] as explained in detail at https://www.dkrz.de/Nutzerportal/
dokumentationen/de-mistral/de-running-jobs/de-accounting-and-priorities

17

https://www.dkrz.de/Nutzerportal/dokumentationen/de-mistral/de-running-jobs/de-accounting-and-priorities
https://www.dkrz.de/Nutzerportal/dokumentationen/de-mistral/de-running-jobs/de-accounting-and-priorities

e QOS factor € [0, 1] normalized according to ’sacctmgr show qos’ (e.g. normal = 0,
express = 0.1, bench = 1)

with the weights:
e PriorityWeightFairshare=1000
e PriorityWeight QOS=1000
e PriorityWeight Age=100
The final job priority is then calculated as

Job_priority =(PriorityWeight Age) * (age_factor)+
(PriorityWeight Fairshare) x (fairshare_factor)+ (3.1)
(PriorityWeightQOS) x (QOS_factor)

While the command ’squeue’ has format options (%p and %Q) that display a job’s
composite priority, the command ’sprio’ can be used to display a breakdown of the priority
components for each job, e.g.

bash$ sprio

JOBID PRIORITY AGE FAIRSHARE QOS
1421556 1175 100 975 100
2015831 274 20 204 50
2017372 258 0 258 0

3.5 Job Environment

On the compute nodes, the whole shell environment is passed to the jobs during the
submission. However, users can change this default behaviour using some options of
the allocation commands (like ——export for the sbatch command). The users can load
modules and prepare the desired environment before a job submission, and then this
environment will be passed to the jobs that will be submitted. Of course, a good practice
is to include the module commands inside the job-scripts in order to have full control of
the environment of the jobs.

18

Chapter 4

SLURM Usage

This chapter serves as an overview of user commands provided by SLURM and how
users should use the SLURM batch system in order to run jobs on MISTRAL. For a
comparison to LoadLeveler commands, see http://slurm.schedmd.com/rosetta.pdf
or read the more detailed description of each command’s manpage. A concise cheat sheet
for SLURM can be downloaded here: http://slurm.schedmd.com/pdfs/summary.pdf

4.1

SLURM Command Overview

SLURM offers a variety of user commands for all the necessary actions concerning the

jobs.

With these commands, the users have a rich interface to allocate resources, query

jobs status, control jobs, manage accounting information and simplify their work with
some utility commands. For the examples of how to use these command, see Chapter 4.6.

sinfo

squeue

sbatch

scancel

salloc

shows information about all the partitions and nodes managed by SLURM as well
as about the general system state. It has a wide variety of filtering, sorting, and
formatting options.

queries the list of pending and running jobs. By default, it reports the list of pending
jobs sorted by priority and the list of running jobs sorted separately according to the
job priority. The most relevant job states are running (R), pending (PD), completing
(CG), completed (CD) and cancelled (CA). The TIME field shows the actual job
execution time. The NODELIST (REASON) field indicates on which nodes the job
is running or the reason why the job is pending. Typical reasons for pending jobs
are waiting for resources to become available (Resources) and queuing behind a job
with a higher priority (Priority).

submits a batch script. The script will be executed on the first node of the allocation.
The working directory coincides with the working directory of the sbatch directory.
Within the script, one or multiple srun commands can be used to create job steps
and execute parallel applications.

cancels a pending or running job or job step. It can also be used to send an arbitrary
signal to all processes associated with a running job or job step.

requests interactive jobs/allocations. As soon as a job starts , a shell (or other pro-
gram specified on the command line) also start on the submission host (login node).
From this shell, you should use srun to interactively start a parallel application.
The allocation is released when the user exits the shell.

19

http://slurm.schedmd.com/rosetta.pdf
http://slurm.schedmd.com/pdfs/summary.pdf

srun initiates parallel job steps within a job or start an interactive job.

scontrol (primarily used by the administrators) provides some functionalities for the users to
manage jobs or get some information about the system configuration such as nodes,
partitions, jobs, and configurations.

sprio queries job priorities.
sshare retrieves fair-share information for each account the user belongs to.

sstat queries status information related to CPU, task, node, RSS and virtual memory
about a running job.

sacct retrieves accounting information about jobs and job steps. For completed jobs, sacct
queries the accounting database.

4.2 Allocation Commands

A job allocation, i.e. a request for computing resources, can be created using the SLURM
salloc, sbatch or srun command.

The usual way to allocate resources and execute a job on MISTRAL is to write a
batch script and submit it to SLURM with the sbatch command - see section 4.2.3 for
details. Alternatively, an interactive allocation can be used via the salloc command or
a parallel job can directly be started with the srun command.

4.2.1 Interactive Jobs

Interactive sessions can be allocated using the salloc command. The following command,
for example, will allocate 2 nodes for 30 minutes:

bash$ salloc ——nodes=2 ——time=00:30:00 ——account=x12345

Once an allocation has been made, the salloc command will start a bash shell on the
login node where the submission was done. After a successful allocation, the users can
execute srun from that shell to spawn interactively their applications. For example:

bash$ srun ——ntasks=4 ——ntasks—per—node=2 ——cpus—per—task=4 ./my_code

The interactive session is terminated by exiting the shell. In order to run commands
directly on the allocated compute nodes, the user has to use ssh to connect to the desired
nodes. For example:

bash$ salloc —nodes=2 —time=00:30:00 —account=x12345
salloc: Granted job allocation 13258

bash$ squeue —j 13258
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
13258 compute bash x123456 R 0:11 2 m[10001 —-10002]

bash$ hostname # we are still on the login node
mloginl103

bash$ ssh m10001

user@m10001:~$ hostname

20

m10001

user@m10001:~$ exit
logout
Connection to ml10001 closed.

bash$ exit # we need to exit in order to release the allocation
salloc: Relinquishing job allocation 13258
salloc: Job allocation 13258 has been revoked.

4.2.2 Spawning Command

With srun the users can spawn any kind of application, process or task inside a job
allocation or directly start executing a parallel job (and indirectly ask SLURM to cre-
ate the appropriate allocation). It can be a shell command, any single-/multi-threaded
executable in binary or script format, MPI application or hybrid application with MPI
and OpenMP. When no allocation options defined with srun command, the options from
sbatch or salloc will be inherited.

srun should preferably be used either

1. inside a job script submitted by sbatch - see 4.2.3.

2. or after calling salloc.

The allocation options of srun for the job-steps are (almost) the same as those for sbatch
and salloc (please see the table in section 4.2.3 for some allocation options).
Examples:
Spawn 48 tasks on 2 nodes (24 tasks per node) for 30 minutes:

bash$ srun —N 2 —n 48 —t 30 —A xy1234 ./my_small_test_job

You will have to specify the account to be used for this job in the same manner as for
salloc and sbatch.

4.2.3 Batch Jobs

Users submit batch applications using the sbatch command. The batch script is usually
a shell script consisting of two parts: resources requests and job steps. Resources requests
are, for example, the number of nodes needed to execute the job, the number of tasks,
the time duration of the job etc. Job steps are user’s tasks that must be executed. The
resources requests and other SLURM submission options are prefixed by '#SBATCH’ and
must precede any executable commands in the batch script. For example:

#!/bin/bash

#SBATCH ——partition=compute
#SBATCH ——account=xz0123
#SBATCH ——nodes=1

#SBATCH ——ntasks—per—node=24
#SBATCH ——time=00:30:00

Begin of section with executable commands
set —e

Is —1

srun ./my_program

21

The script itself is regarded by SLURM as the first job step and is (serially) executed on
the first compute node in the job allocation. To execute parallel MPI tasks, users call
srun within their script. Thereby, a new job step is initiated. It is possible to execute
parallel programs in the form of job steps in any configuration within the job allocation.
This means that a job step can use all allocated resources or several job steps (created
via multiple srun calls) can use a subset of allocated resources.

The following table describes the most common or required allocation options that

can be defined in a batch script:

#SBATCH option

default value

description

—--nodes=<number>
-N <number>

1

Number of nodes for the allocation

--ntasks=<number>
-n <number>

Number of tasks (MPI processes).
Can be omitted if --nodes
and --ntasks-per-node are
given

--ntasks-per—-node=<number>

Number of tasks per node.

If keyword omitted the default
value is used, but there are
still 48 CPUs available per node
for current allocation (if not shared)

--cpus-per-task=<number>
—-c <number>

Number of threads (logical cores)
per task. Used mainly for OpenMP
or hybrid jobs

--output=<path>/<file pattern>
-0 <path>/<file pattern>

slurm-%j.out

Standard output file

-—error=<path>/<file pattern>
-e <path>/<file pattern>

slurm-7%j.out

Standard error file

-—time=<walltime>
-t <walltime>

partition dep.

Requested walltime limit for
the job

--partition=<name>
-p <name>

Partition to run the job

--mail-user=<email>

usernaine

Email address for notifications

--mail-type=<mode>

Event types for email notifications.
Possible values are NONE, BEGIN,
END, FAIL, REQUEUE, ALL,
TIMELIMIT

—--job—name=<jobname>
-J <jobname>

job script’s name

Job name

—-—account=<project>

-—-no-requeue

. none Project that should be charged

-A <project>
Specifies whether the batch job
_requeue should be requeued after a node
no-requeue failure. When a job is requeued,

the batch script is initiated from
its beginning!

Table 4.1: SLURM sbatch options

Multiple srun calls can be placed in a single batch script.

Options such as --nodes,

--ntasks and --ntasks-per-node are inherited from the sbatch arguments, but can be

22

overwritten for each srun invocation.
The complete list of parameters can be inquired from the sbatch man page:

bash$ man sbatch

As already mentioned above, the batch script is submitted using the SLURM sbatch
command:

bash$ sbatch [OPTIONS] <jobscript>

On success, sbatch writes the job ID to the standard output. Options provided on a
command line supersede the same options defined in the batch script.

Remember the difference between options for selection, allocation and distribution in
SLURM. Selection and allocation works with sbatch, but task distribution and binding
should directly be specified with srun (within an sbatch-script). The following steps give
an overview, for details see the further documentation below.

1. Resource Selection, e.g.

e #SBATCH --nodes=2
e #SBATCH --sockets-per-node=2
e #SBATCH --cores-per-socket=12

2. Resource Allocation, e.g.

e #SBATCH --ntasks=12
e #SBATCH --ntasks-per-node=6
e #3SBATCH --ntasks-per-socket=3

3. Starting the application relying on the sbatch options only. Task binding and dis-
tribution with srun, e.g.

srun ——cpu_bind=cores --distribution=block:cyclic <my_binary>

4. Starting the application using only parts of the allocated resources, one needs to give
again all relevant allocation options to srun (like --ntasks or --ntasks-per-node),

e.g.

srun --ntasks=2 --ntasks-per-node=1 --cpu_bind=cores \
--distribution=block:cyclic <my_binary>

All environment variables set at the time of submission are propagated to the SLURM
jobs. With some options of the allocation commands (like -—export for sbatch or srun),
users can change this default behaviour. The users can load modules and prepare the
desired environment before job submission, and then this environment will be passed to
the jobs that will be submitted. Of course, a good practice is to include module commands
in job scripts, in order to have full control of the environment of the jobs.

NOTE: on the MISTRAL cluster setting either -A or --account is necessary to
submit a job, otherwise the submission will be rejected. You can query the accounts for
which job submission is allowed using the command:

bash$ sacctmgr list assoc format=account,qos,MaxJobs user=§USER

Furthermore, you will have to specify the partition on which the job will run by using
either the —-p or ——partition option to sbatch. Otherwise the submission will be rejected
(note: we will enforce this starting at September 1st 2016 - please be prepared and modify
your batch scripts accordingly).

23

4.3 Job Script Examples

Serial job

#!/bin /bash

#SBATCH —job—name=my _job
#SBATCH —partition=shared
#SBATCH —ntasks=1

Specify job name

Specify partition name

Specify max. number of tasks

to be invoked

Specify real memory required per CPU
Set a limit on the total run time
Notify user by email in case of
job failure

Charge resources on this

project account

#SBATCH —output=my_job . o%)} File name for standard output
#SBATCH —error=my _job . e%j # File name for standard error output

#SBATCH —mem—per—cpu=1280
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL

#SBATCH —account=xz0123

F I FFHFIFIFFHFRHRHEFE

execute serial programs, e.g.
cdo <operator> <ifile > <ofile >

Note: The shared partition has a limit of 1280MB memory per CPU. In case your
serial job needs more memory, you have to increase the number of tasks (using option
--ntasks) although you might not use all these CPUs. Alternatively, you can try to run
your job in the partition prepost which has maximal 5120 MB memory per CPU.

OpenMP job without HyperThreading

#!/bin /bash

Specify job name

Specify partition name

Specify max. number of tasks

to be invoked

Specify number of CPUs per task

Set a limit on the total run time

Notify user by email in case of

job failure

#SBATCH —account=xz0123 # Charge resources on this
#project account

#SBATCH —output=my_job . o%)} # File name for standard output

#SBATCH —error=my_job . e%j # File name for standard error output

#SBATCH —job—name=my _job
#SBATCH —partition=shared
#SBATCH —ntasks=1

H#SBATCH —cpus—per—task=16
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL

FIFHFIHFRHFHFE

bind your OpenMP threads

export OMPNUM THREADS=8

export KMP_AFFINITY=verbose , granularity=core ,compact,1
export KMP_STACKSIZE=64M

execute OpenMP programs, e.g.
cdo —P 8 <operator> <ifile > <ofile >

24

Note: You need to specify the value of --cpus-per-task as a multiple of Hyper-
Threads (HT). The environment variable KMP_AFFINITY needs to be set correspondingly.
Whether HT is used or not is defined via the envVar KMP_AFFINITY, see 4.5.2 for details.

OpenMP job with HyperThreading

#!/bin /bash

#SBATCH —job—name=my _job
#SBATCH —partition=shared
#SBATCH —ntasks=1

Specify job name

Specify partition name

Specify max. number of tasks

to be invoked

Specify number of CPUs per task

Set a limit on the total run time

Notify user by email in case of
job failure

#SBATCH —account=xz0123 # Charge resources on this
#project account

#SBATCH —output=my_job . 0%} # File name for standard output

#SBATCH —error=my_job . e%j # File name for standard error output

H#SBATCH —cpus—per—task=8
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL

F I FHFHF I

bind your OpenMP threads

export OMPNUM THREADS=S8

export KMP_AFFINITY=verbose , granularity=thread ,compact,1
export KMP_STACKSIZE=64M

execute OpenMP programs, e.g.
cdo —P 8 <operator> <ifile > <ofile >

MPI job without HyperThreading

The overall setting of the batch script does not vary whether one is using Intel MPI or bullx
MPI (or any other MPI implementation). Only specific modules might be used and/or
environmental variables should be set in order to fine-tune the used MPI. Especially, the
parallel application should always be started using the srun command instead of invoking
mpirun, mpiexec or others.

In the following examples 288 cores are used to execute a parallel program. The ex-
amples differ in whether MISTRAL phase 1 nodes (i.e. using 12 nodes from the partition
compute) or MISTRAL phase 2 nodes (only 8 nodes from the partition compute2) are
used. Also the settings for programs built with BullxMPI resp. IntelMPI are distin-
guished.

e phasel nodes, bullxMPI

#!/bin /bash

#SBATCH —job—name=my _job
#SBATCH —partition=compute
#SBATCH —nodes=12

#SBATCH —ntasks—per—node=24
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL
#SBATCH —account=xz0123
#SBATCH —output=my_job . 0%}

25

#SBATCH —error=my_job . e%j

limit stacksize ... adjust to your programs need
ulimit —s 102400

Environment settings to run a MPI parallel program
compiled with BullxMPI and Mellanox libraries

Load environment

module load intel/version_you_used

module load mxm/3.3.3002

module load fca/2.5.2393

module load bullxmpi_mlx/bullxmpi_mlx —1.2.8.3

Settings for Open MPI and MXM (MellanoX Messaging)
library

export OMPIMCA _pml=cm

export OMPI_MCA mtl=mxm

export OMPI_MCA_mtl_ mxm_np=0

export MXMRDMA PORTS=mIx5_0:1

export MXMLOGLEVEL=RROR

Disable GHC algorithm for collective communication
export OMPI_MCA coll="ghc

Use srun (not mpirun or mpiexec) command to launch
programs compiled with any MPI library

srun —1 —propagate=STACK —cpu_bind=cores \
—distribution=block:cyclic ./myprog

phase2 nodes, bullxMPI

#!/bin /bash

#SBATCH —job—name=my _job
#SBATCH —partition=compute?2
#SBATCH —nodes=8

#SBATCH —ntasks—per—node=36
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL
#SBATCH —account=xz0123
#SBATCH —output=my_job . o%)j
#SBATCH —error=my_job . e%j

limit stacksize ... adjust to your programs need
ulimit —s 102400

Environment settings to run a MPI parallel program
compiled with BullxMPI and Mellanox libraries

Load environment

module load intel/version_you_used

module load mxm/3.3.3002

module load fca /2.5.2393

module load bullxmpi_mlx/bullxmpi_mlx —1.2.8.3

Settings for Open MPI and MXM (MellanoX Messaging)
library

export OMPI_MCA _pml=cm

export OMPI_MCA _mtl=mxm

26

export OMPI_MCA_mtl mxm_np=0

export MXMRDMAPORTS=mlx5_0:1

export MXM LOGLEVEI=RROR

Disable GHC algorithm for collective communication
export OMPI_MCA _coll="ghc

Use srun (not mpirun or mpiexec) command to launch

programs compiled with any MPI library

srun —1 —propagate=STACK —cpu_bind=cores \
—distribution=block: cyclic ./myprog

phasel nodes, IntelMPI

#!/bin /bash

#SBATCH —job—name=my _job
#SBATCH —partition=compute
#SBATCH —nodes=12

#SBATCH —ntasks—per—node=24
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL
#SBATCH —account=xz0123
#SBATCH —output=my_job . 0%]j
#SBATCH —error=my_job . e%j

limit stacksize ... adjust to your programs need
ulimit —s 102400

Environment settings to run a MPI parallel program
compiled with Intel MPI

module load intel/version_you_used

module load intelmpi/version_you_used

export I.MPI PMI LIBRARY=/usr/lib64 /libpmi.so

Use srun (not mpirun or mpiexec) command to launch

programs compiled with any MPI library

srun —1 —propagate=STACK —cpu_bind=cores \
—distribution=block:cyclic ./myprog

phase2 nodes, IntelMPI

#!/bin/bash

#SBATCH —job—name=my _job
#SBATCH —partition=compute?2
#SBATCH —nodes=8

#SBATCH —ntasks—per—node=36
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL
#SBATCH —account=xz0123
#SBATCH —output=my_job . 0%j
#SBATCH —error=my_job . e%j

limit stacksize ... adjust to your programs need
ulimit —s 102400

27

Environment settings to run a MPI parallel program
compiled with Intel MPI

module load intel/version_you_used

module load intelmpi/version_you_used

export I.MPI PMI LIBRARY=/usr/lib64 /libpmi.so

Use srun (not mpirun or mpiexec) command to launch

programs compiled with any MPI library

srun —1 —propagate=STACK —cpu_bind=cores \
—distribution=block: cyclic ./myprog

MPI job with HyperThreading

The following examples all ask for 144 MPI-tasks. When using Hyper-Threading, two
tasks can use one physical CPU leading to a reduced number of nodes needed for a job
- at the expense of a possibly slower runtime. Again, the examples differ in the used
partition and MPI implementation.

e phasel nodes, bullxMPI

#!/bin /bash

#SBATCH —job—name=my _job
#SBATCH —partition=compute
#SBATCH —nodes=3

#SBATCH —ntasks—per—node=48
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL
#SBATCH ——account=xz0123
#SBATCH —output=my_job . o%)j
#SBATCH —error=my_job . e%j

limit stacksize ... adjust to your programs need
ulimit —s 102400

Environment settings to run a MPI parallel program
compiled with BullxMPI and Mellanox libraries

Load environment

module load intel/version_you_used

module load mxm/3.3.3002

module load fca /2.5.2393

module load bullxmpi-mlx/bullxmpi_mlx —1.2.8.3

Settings for Open MPI and MXM (MellanoX Messaging)
library

export OMPIMCA _pml=cm

export OMPI_MCA _mtl=mxm

export OMPI_MCA _mtl_mxm_np=0

export MXMRDMA PORTS=mlx5_0:1

export MXM LOGLEVEI=RROR

Disable GHC algorithm for collective communication
export OMPI_MCA _coll="ghc

Use srun (not mpirun or mpiexec) command to launch
programs compiled with any MPI library
srun —1 —propagate=STACK ——cpu_bind=threads \

28

’ —distribution=block: cyclic ./myprog

phase2 nodes, bullxMPI

#!/bin /bash

#SBATCH —job—name=my _job
#SBATCH —partition=compute?2
#SBATCH —nodes=2

#SBATCH —ntasks—per—node=72
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL
#SBATCH —account=xz0123
#SBATCH —output=my_job . 0%]j
#SBATCH —error=my _job . e%j

limit stacksize ... adjust to your programs need
ulimit —s 102400

Environment settings to run a MPI parallel program
compiled with BullxMPI and Mellanox libraries

Load environment

module load intel/version_you_used

module load mxm/3.3.3002

module load fca /2.5.2393

module load bullxmpi_mlx/bullxmpi_mlx —1.2.8.3

Settings for Open MPI and MXM (MellanoX Messaging)
library

export OMPI_MCA pml=cm

export OMPI_MCA _mtl=mxm

export OMPI_MCA_mtl_ mxm_np=0

export MXMRDMA PORTS=mlx5_0:1

export MXM LOGLEVEI=RROR

Disable GHC algorithm for collective communication
export OMPI_MCA _coll="ghc

Use srun (not mpirun or mpiexec) command to launch

programs compiled with any MPI library

srun —1 —propagate=STACK —cpu_bind=threads \
—distribution=block: cyclic ./myprog

phasel nodes, IntelMPI

#!/bin/bash

#SBATCH —job—name=my _job
#SBATCH —partition=compute
#SBATCH —nodes=3

#SBATCH —ntasks—per—node=48
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL
#SBATCH —account=xz0123
#SBATCH —output=my_job . 0%]j
#SBATCH —error=my _job . e%j

limit stacksize ... adjust to your programs need

29

ulimit —s 102400

Environment settings to run a MPI parallel program
compiled with Intel MPI

module load intel/version_you_used

module load intelmpi/version_you_used

export [_.MPI_.PMI_LIBRARY=/usr/lib64 /libpmi.so

Use srun (not mpirun or mpiexec) command to launch

programs compiled with any MPI library

srun —1 —propagate=STACK —cpu_bind=threads \
—distribution=block: cyclic ./myprog

e phase2 nodes, IntelMPI

#!/bin /bash

#SBATCH —job-—name=my _job
#SBATCH —partition=compute?2
#SBATCH —nodes=2

#SBATCH —ntasks—per—node=72
#SBATCH —time=00:30:00
#SBATCH —mail—type=FAIL
#SBATCH —account=xz0123
#SBATCH —output=my_job . o%)j
#SBATCH —error=my_job . e%]j

limit stacksize ... adjust to your programs need
ulimit —s 102400

Environment settings to run a MPI parallel program
compiled with Intel MPI

module load intel/version_you_used

module load intelmpi/version_you_used

export I_.MPI_ PMILIBRARY=/usr/lib64/libpmi.so

Use srun (not mpirun or mpiexec) command to launch

programs compiled with any MPI library

srun —1 —propagate=STACK —cpu_bind=threads \
—distribution=block: cyclic ./myprog

Instead of specifying the choice to use HyperThreads or not explicitly via -—cpus-per-task
and --cpu_bind, one might also use the srun option —-hint=[no]lmultithread. The fol-
lowing example allocates one full Haswell node and uses 24 tasks without Hyper-Threading
for the first program run and then 48 tasks using Hyper-Threading for the second run.
Such a procedure might be used in order to see whether an application benefits from the
use of HyperThreads or not.

#!/bin /bash
#SBATCH —job—name=my _job # Specify job name
#SBATCH —partition=compute # Specify partition name

#SBATCH —nodes=1 # Specify number of nodes

H#SBATCH —time=00:30:00 # Set a limit on the total run time
#SBATCH —mail—type=FAIL # Notify user by email

#SBATCH —account=xz0123 # Charge resources on this

30

project account

Environment settings to execute a parallel program compiled
with Intel MPI

module load intelmpi

export I.MPI PMI LIBRARY=/usr/1lib64 /libpmi.so

First check how myprog performs without Hyper—Threads
srun —1 —cpu_bind=verbose —hint=nomultithread —ntasks=24 ./myprog

Second check how myprog performs with Hyper—Threads
srun —1 —cpu_bind=verbose —hint=multithread —ntasks=48 ./myprog

Hybrid MPI/OpenMP job without Hyper-Threading

The following job example will allocate 4 Haswell compute nodes from the compute par-
tition for 1 hour. The job will launch 24 MPI tasks in total, 6 tasks per node and 4
OpenMP threads per task. On each node 24 cores will be used. These settings have to be
adapted to 36 physical CPUs if the compute2 partition is to be used. Furthermore, one
has to slightly change the loaded modules and environmental variables set when Intel MPI
should be used.

#!/bin /bash

#SBATCH —job—name=my _job # job name

#SBATCH —partition=compute # partition name

#SBATCH —nodes=4 # number of nodes

#SBATCH —ntasks—per—node=6 # number of (MPI) tasks per node
#SBATCH —time=01:00:00 # Set a limit on the total run time
#SBATCH —mail—type=FAIL # Notify user by email

#SBATCH —account=xz0123 # Charge resources on project account
#SBATCH —output=my_job . o%)j # File name for standard output
#SBATCH —error=my_job . e%j # File name for standard error output

Bind your OpenMP threads

export OMPNUM THREADS=4

export KMP_AFFINITY=verbose , granularity=core ,compact,1
export KMP_STACKSIZE=64m

Environment settings to run a MPI/OpenMP parallel program compiled
with Bullx MPI and Mellanox libraries , load environment

module load intel

module load mxm/3.3.3002

module load fca/2.5.2393

module load bullxmpi_-mlx/bullxmpi_mlx —1.2.8.3

Settings for Open MPI and MXM (MellanoX Messaging) library
export OMPI_MCA pml=cm

export OMPI_MCA_mtl=mxm

export OMPI_MCA _mtl_mxm_np=0

export MXMRDMA PORTS=mlx5_0:1

export MXM LOGLEVEI=RROR

Disable GHC algorithm for collective communication

31

export OMPI_MCA _coll="ghc

limit stacksize ... adjust to your programs need
ulimit —s 102400

Environment settings to run a MPI/OpenMP parallel program compiled
with Intel MPI, load environment

module load intelmpi

export I_.MPI_ PMILIBRARY=/usr/lib64 /libpmi.so

Use srun (not mpirun or mpiexec) command to launch programs compiled
with any MPI library
srun —1 —propagate=STACK ——cpu_bind=cores ——cpus—per—task=8 ./myprog

Hybrid MPI/OpenMP job with Hyper-Threading

The following example will run on 2 compute nodes while having 6 MPI tasks per node
and starting 8 threads per node using Hyper-Threading.

#!/bin /bash

#SBATCH —job-—name=my _job # job name

#SBATCH —partition=compute # partition name

#SBATCH —nodes=2 # number of nodes

#SBATCH —ntasks—per—node=6 # number of (MPI) tasks on each node
#SBATCH —time=01:00:00 # Set a limit on the total run time
#SBATCH —mail—type=FAIL # Notify user by email

#SBATCH —account=xz0123 # Charge resources on project account
#SBATCH —output=my_job . o%)j # File name for standard output
#SBATCH —error=my_job . e%j # File name for standard error output

Bind your OpenMP threads

export OMPNUM THREADS=8

export KMP_AFFINITY=verbose , granularity=thread ,compact,1
export KMP_STACKSIZE=64m

Environment settings to run a MPI/OpenMP parallel program compiled
with Bullx MPI and Mellanox libraries , load environment

module load intel

module load mxm/3.3.3002

module load fca /2.5.2393

module load bullxmpi_mlx/bullxmpi_mlx —1.2.8.3

Settings for Open MPI and MXM (MellanoX Messaging) library
export OMPIMCA pml=cm

export OMPI_MCA mtl=mxm

export OMPI_MCA_mtl_ mxm_np=0

export MXMRDMA PORTS=mIx5_0:1

export MXMLOGLEVEL=RROR

Disable GHC algorithm for collective communication
export OMPI_MCA coll="ghc

limit stacksize ... adjust to your programs need

32

ulimit —s 102400

Environment settings to run a MPI/OpenMP parallel program compiled
with Intel MPI, load environment

module load intelmpi
export I.MPI PMI LIBRARY=/usr/1lib64 /libpmi.so

Use srun (not mpirun or mpiexec) command to launch programs
compiled with any MPI library
srun —1 —propagate=STACK —cpu_bind=cores —cpus—per—task=8 ./myprog

4.4 Adapting job-scripts for MISTRAL phase2

Since phasel and phase2 nodes of MISTRAL are equipped with different Intel CPUs, you
will have to slightly adapt your existing job scripts in oder to use both partitions. The
following table gives an overview on the differences and which partitions are affected.

phase | partitions CPU cores per | processor frequency
node
1 compute, Xeon E5-2680 v3 24 2.5 GHz
prepost, processor (Haswell
shared,gpu, - HSW)
miklip
2 compute2 Xeon E5-2695 v4 36 2.1 GHz
processor
(Broadwell -
BDW)

Table 4.2: Difference of MISTRAL phasel and phase2 nodes

As the table indicates just two issues arise if batch scripts should be useable for both
phases:

e different number of cores per node

e different processor frequency

Setting the right CPU frequency for each partition

SLURM allows to request that the job step initiated by the srun command shall be run at
the requested frequency (if possible) on the CPUs selected for that step on the compute
node(s). This can be done via

e srun option —--cpu-freq
e cnvironmental variable SLURM_CPU_FREQ_REQ

If none of these options is set, DKRZ slurm automatically chooses the appropriate fre-
quency for the underlying processor. We therefore recommend to not set the frequency
explicitly.

In case that a wrong frequency is defined via envVar (e.g. setting SLURM_CPU_FREQ_REQ=2500000
for the BDW nodes in compute2 partition) a warning message on stdout is given like

33

[DKRZ—slurm WARNING] CPU—frequency chosen (2500000) not supported on partition
compute2 — frequency will be set to nominal instead!

If you are using a wrong frequency for the srun option --cpu-freq, a warning message on
stdout is given, but this time the automatic frequency adaption falls back to the minimal
frequency:

[DKRZ—slurm WARNING] CPU—frequency chosen (2501000) not supported on partition

compute2 — frequency will fall back to minimum instead!

Setting the right number of cores

When allocating nodes using the sbatch or salloc command one has to specify the targeted

partition and therefore the type of CPU directly. Nevertheless, jobscripts that were

originally written to run on the 24 core Intel Haswell nodes (i.e. in the compute partition)

will in general also run in the compute2 partition but do not make use of the full node.
We attempt to catch these cases and issue an info message on stdout like

[DKRZ—slurm INFO] it seems that your job is not using all CPUs on BDW nodes
[DKRZ—slurm INFO] tasks_per_node 24, cpus_per_tasks 2

The most critical sbatch/srun option in this context is —~-ntasks-per-node. Setting e.g.
a value of 24 is appropriate for Haswell nodes but uses only 2/3 of the CPUs on Broadwell
nodes. Hence, you should pay major attention to this when adapting your batch scripts
for the compute2 partition.

Writing more flexible batch scripts, that are able to run on both kinds of CPU, requires
avoidance of sbatch options that prescribe the number of tasks per entity, i.e. you should
not use a prescribed number of nodes and one of

e —-ntasks-per—-core=<ntasks>

--ntasks-per-socket=<ntasks>

--ntasks-per-node=<ntasks>
e ——tasks-per—node=<n>

Instead define the total number of tasks that your MPI parallel program will be using for
srun by specifying

—n <number> or ——ntasks=<number>

in combination with the number of CPUs needed per task, e.g. —-cpus-per-task=2 for
a pure MPI parallel program not using HyperThreading.

The following batch script will run an MPI job without HyperThreading either in the
compute or compute2 partition - only depending on the #SBATCH --partition choice.

#!/bin/bash

#SBATCH ——job—name=my_job

#SBATCH ——partition=compute # or compute2 for BDW nodes
#SBATCH ——ntasks=72

#SBATCH ——cpus—per—task=2

#SBATCH ——time=00:30:00

#SBATCH ——mail—type=FAIL

#SBATCH ——account=xz0123

34

#SBATCH ——output=my_job.0%)j
#SBATCH ——error=my_job.e%j

srun —1 ——propagate=STACK ——cpu_bind=cores ./myprog

When submitted to the compute partition, the job will run on 3 nodes with 24 tasks per
node. While in the compute2 partition the same job only takes 2 nodes with 36 tasks per
node.

Writing job scripts eligible to run on several partitions

The --partition option also allows for a comma separate list of names. In this case the
job will run completely on the partition offering earliest initiation with no regard given
to the partition name ordering - i.e. nodes will not be mixed between the partitions! Be
aware that the total number of tasks should be a multiple of both, 24 and 36, in order to
fully populate all nodes. Otherwise, some nodes might be underpopulated. The example
above might therefore be modified to use

#!/bin/bash

#SBATCH ——job—name=my_job
#SBATCH ——partition=compute, compute2
#SBATCH ——ntasks=T72

which in general will decrease the waiting time of the job in the submit queue since more
nodes are suitable to schedule the job on. Attention: compute2 partition (Broadwell
nodes) shows a slightly lesser performance due to the lower CPU-frequency compared to
compute partition (Haswell nodes). You should take this into account when submitting
jobs that are eligible to run on both partitions.

4.5 Advanced SLURM Features

4.5.1 Hyper-Threading (HT)

Similar to the IBM Power6 used in BLIZZARD, the Haswell and Broadwell processors
deployed for MISTRAL offer the possibility of Simultaneous Multithreading (SMT) in the
form of the Intel Hyper-Threading (HT) Technology. With HT enabled, each (physical)
processor core can execute two threads or tasks simultaneously. We visualize this in the
following for the Haswell nodes only - the equivalent for Broadwell nodes is obvious.

Each node on MISTRAL phasel partition ’compute’ consists of two Intel Xeon E5-
2680 v3 processors, located on socket zero and one. The first 24 processing units are
physical cores labelled from 0 to 23. The second 24 processing units are Hyper threads
labelled from 24 to 47. Figure 4.1 depicts a node schematically and illustrates the naming
convention.

On MISTRAL, we have HT enabled on each compute node and SLURM always
uses the option --threads-per-core=2 implicitly so that the user is urged to bind the
tasks/threads in an appropriate way. In Section 4.3, there are examples (commands and
job scripts) on how to use HT or not.

35

13D 95 1580 102480 90 U =g

|eashyd ;saxapu

131 His0H
L¥#d Nd ob#d nd Sb#d Nd Pha#d Nd £b#d Nd Zh#d Nd L¥#d Nd oF#d nd BE#d Nd 8E#d Nd Le#d Nd gE#d Nd
£2#d Nd 2z#d Nd 12#d Nd 0z#d Nd Gl#d nd gl#d nd Li#d nd 9i#d nd Sl#d nd Fl#d Nd £l#d Nd Zl#d nd
£l#d =oD gl#d =oD | 1#d m0g Ol#d =0 g#d =00 ggd =0 G#d =0D titd oD E£#d 0D Z#d oD i#d oD 0#d oD
(awzel P17 _ _ (amzel P11 _ _ (amze) P11 _ _ (amze) P11 _ _ (amze) P17 _ _ (amze) P11 _ _ (amze) P11 _ _ (amze) P11 _ _ (amze) P _ _ (axzel P17 _ _ (avzel P17 _ _ (avzel P17 _
(avace) 21 _ _ (axeca) 21 _ _ (axeca 21 _ _ (gvaca) 21 _ _ (gveca) 21 _ _ (axeca 21 _ _ (aveca 21 _ _ (axeca 21 _ _ (axesa 21 _ _ (Bxesa 21 _ _ (Bxesa 21 _ _ (Bxesa 21 _
(amoel £1 _
l#d 19003
(goal 1#d =PONWNNN _
SE#d Nd ¥E#d Nd £E#d Nd ge#d Nd LE#d Nd oE#d nd Gz#d Nd az#d Nd Lz#d nd oz#d Nd sz#d Nd ¥z#d Nd
Li#d Nd Ol#d nd 6#d Nd 8#d Nd 1#d Nd 0#d nd #d Md ¥#d Nd £#d Nd Z#d MNd L#d Nd O#d Nd
£l#d @00 Zl#d @0D | l#d @00 Ol#d @03 6#d a00 g#d a0Q G#d aI0Q titd @0D E#d @00 Z#d oD l#d a0 0#d @00
(guzel P17 _ _ (guzel P _ _ (guze) P _ _ lanze) P _ _ lamzel P _ _ (amzel P _ _ lanzel P _ _ lanzel P11 _ _ lanzel P _ _ (gxzel P _ _ (anzel P _ _ (gnzel P _
(avace) 21 _ _ (avaca) 21 _ _ (avaca 21 _ _ (gveca) 1 _ _ (gveca) 21 _ _ (aveca) 21 _ _ (aveca) 21 _ _ (axeca) 21 _ _ (axesa) 21 _ _ (Bxesa 21 _ _ (Bxesa 21 _ _ (Bxesd 21 _
(awoel g1 _
0#d |29005

(goral o#d SPONTNNN _

(aDaz 1) suyoey

Figure 4.1: Schematic illustration of Haswell compute nodes

4.5.2 Process and Thread Binding

OpenMP jobs

Thread binding is done via Intel runtime library using the KMP_AFFINITY environment

variable. The syntax is

KMP_AFFINITY

[<modifier>,...|<type>[,<permute>][,<offset>]

with

e modifier

— verbose: gives detailed output on how binding was done.

36

— granularity=core: reserves the full physical cores (i.e. two logical CPUs) to
run threads on.

— granularity=thread/fine: reserves logical CPUs / HyperThreads to run threads.
e type

— compact: places the threads as close to each other as possible.

— scatter: distributes the threads as evenly as possible across the entire alloca-
tion.

e permute: controls which levels are most significant when sorting the machine topol-
ogy map, i.e.. 0=CPUs (default), 1=cores, 2=sockets/LLC

e offset: indicates the starting position for thread assignment.

For details, please take a look at the Intel manuals or contact DKRZ user’s consultancy.
In most cases, use

export KMP_AFFINITY =granularity=core,compact,1

if you do not want to use HyperThreads and use

export KMP_AFFINITY =granularity=thread,compact,1

if you intend to use HyperThreads. You might also try scatter instead of compact place-
ment to take benefit from bigger L3 cache.

MPI jobs

Process/task binding can be done via srun options --cpu_bind and --distribution.
The syntax is

——cpu_bind=[{quiet,verbose},|type
——distribution=<block|cyclic|arbitrary|plane=<options>|:block]|cyclic] >

with
e type:

— cores: binds to physical cores
— threads: binds to logical CPUs / HyperThreads

e the first distribution method (before the ”:”) controls the distribution of resources
across nodes

9.9

e the second (optional) distribution method (after the ”:”) controls the distribution
of resources across sockets within a node

For details, please take a look at the manpage of srun or contact DKRZ user’s consultancy.
In most cases, use

bash$ srun ——cpu_bind=verbose,cores ——distribution=block:cyclic ./myapp

if you do not want to use HyperThreads and use

bash$ srun ——cpu_bind=verbose,threads ——distribution=block:cyclic ./myapp

if you intend to use HyperThreads. You might also benefit from different task distributions
than block:cyclic.

37

Hybrid MPI/OpenMP jobs

In this case, you need to combine the two binding methods mentioned above. Keep in
mind that we are using --threads-per-core=2 throughout the cluster. Hence, you need
to specify the amount of CPUs per process/task on the basis of HyperThreads even if
you do not intend to use HyperThreads! The following table gives an overview on how to
achieve correct binding using a full Haswell node in the compute partition

MPI intranode distribution of tasks =
srun —distribution=block:block srun —distribution=block:cyclic
no
OpenMP, | 4opaTCH --tasks-per-node=24 #SBATCH --tasks-per-node=24
no HT . .
srun --cpu_bind=cores srun --cpu_bind=cores
task0:cpu{0,24}, taskl:cpu{1,25}, ... task0:cpu{0,24}, taskl:cpu{12,36}, ...
no
(})IgenMP’ #SBATCH --tasks-per-node=48 #SBATCH --tasks-per-node=48
srun --cpu_bind=threads srun --cpu_bind=threads
task0:cpu0, taskl:cpu24, task2:cpul, task0:cpu0, taskl:cpul2, task2:cpul,
4
glpeng/lp #SBATCH --tasks-per-node=6 #SBATCH --tasks-per-node=6
“IJ’;‘TS’ export OMP_NUM_THREADS=4 export OMP_NUM_THREADS=4
no export KMP_AFFINITY=\ export KMP_AFFINITY=\
granularity=core,\ granularity=core,\
compact,1 compact,1
srun --cpu_bind=cores \ srun --cpu_bind=cores \
--cpus—-per-task=8 —--cpus-per-task=8
task0:cpu{0,1,2,3,24,25,26,27}, task0:cpu{0,1,2,3,24,25,26,27},
taskl:cpu{4,5,6,7,28,29,30,31}, taskl:cpu{12,13,14,15,36,37,38,39},
taskO-threadO:cpu{0,24}, task0-thread0:cpu{0,24},
taskO-threadl:cpu{1,25},... taskO-threadl:cpu{1,25},...
4
1(:)hpeng/IP #SBATCH --tasks-per-node=12 #SBATCH --tasks-per-node=12
H;ea S export OMP_NUM_THREADS=4 export OMP_NUM_THREADS=4
export KMP_AFFINITY=\ export KMP_AFFINITY=\
granularity=tread, \ granularity=thread,\
compact,1 compact,1
srun --cpu_bind=threads \ srun --cpu_bind=threads \
—--cpus—-per-task=4 --cpus-per-task=4
task0:cpu{0,1,24,25}, task0:cpu{0,1,24,25},
taskl:cpu{2,3,26,27}, task1l:cpu{12,13,36,37},
taskO-thread0:cpu0, taskO-thread0O:cpu0,
task(0-threadl:cpul, taskO-threadl:cpul,
taskO-thread2:cpu24,... taskO-thread2:cpu24,...

Table 4.3: SLURM binding options for MPI/OpenMP jobs on Haswell nodes

38

4.5.3 MPMD

SLURM supports the MPMD (Multiple Program Multiple Data) execution model that
can be used for MPI applications, where multiple executables can have one common
MPI_COMM_WORLD communicator. In order to use MPMD, the user has to set the srun
option —-multi-prog <filename>. This option expects a configuration text file as an
argument, in contrast to the SPMD (Single Program Multiple Data) that srun has to be
given the executable.

Each line of the configuration file can have two or three possible fields separated by
space and the format is

<list of task ranks> <executable> [<possible arguments>|

In the first field, a comma separated list of ranks for the MPI tasks that will be
spawned is defined. The possible values are integer numbers or ranges of numbers. The
second field is the path /name of the executable. And the third field is optional and defines
the arguments of the program.

Example

Listing 4.1: Jobscript template for the coupled MPI-ESM model using 8 Haswell nodes
in the compute partition

#!/bin/bash

#SBATCH ——nodes=8

#SBATCH ——ntasks—per—node=24
#SBATCH ——partition=compute
#SBATCH ——time=00:30:00
#SBATCH ——exclusive

#SBATCH ——account=x12345

Atmosphere
ECHAM_NPROCA=6
ECHAM_NPROCB=16

Ocean
MPIOM_NPROCX=12
MPIOM_NPROCY=8

Paths to executables
ECHAM _EXECUTABLE=../bin/echam6
MPIOM_EXECUTABLE=../bin/mpiom.x

Derived values useful for running

((ECHAM_NCPU = ECHAM NPROCA x+ ECHAM _NPROCB))
((MPIOM_NCPU = MPIOM_NPROCX * MPIOM_NPROCY))
((NCPU = ECHAM_NCPU + MPIOM_NCPU))

((MPIOM_LAST_CPU = MPIOM_NCPU — 1))

((ECHAM_LAST CPU = NCPU — 1))

create MPMD configuration file

cat > mpmd.conf <<EOF
0—${MPIOM_LAST_CPU} $MPIOM_EXECUTABLE

39

${MPIOM_NCPU}—${ECHAM_LAST_CPU} $ECHAM_EXECUTABLE
EOF

Run MPMP parallel program using Intel MPI
module load intelmpi

export I MPI_PMI_LIBRARY=/usr/lib64/libpmi.so
export I MPI_FABRICS=shm:dapl

export [MPI_FALLBACK=0

export | MPI_DAPL_UD=enable

srun —1 ——cpu_bind=verbose,cores ——multi—prog mpmd.conf

4.5.4 Job Steps

Job steps can be thought of as small allocations or jobs inside the current job/allocation.
Each call of srun creates a job-step,implying that one job/allocation given via sbatch can
have one or several job steps executed in parallel or sequentially. Instead of submitting
many single-node jobs, the user might also use job steps inside a single job if a multiple
nodes are allocated. A job using job steps will be accounted for all the nodes of the
allocation regardless of the fact if all nodes are used for job steps or not.

The following example uses job steps to execute MPI programs in different job steps
sequentially after each other and also parallel to each other inside the same job allocation.
In total, 4 nodes are allocated: the first 2 job steps run on all nodes after each other while
the job steps 3 and 4 run in parallel each using only 2 nodes.

#!/bin/bash

#SBATCH ——nodes=4
#SBATCH ——partition=compute
#SBATCH ——time=00:30:00
#SBATCH ——account=x12345

run 2 job steps after each other
srun —N4 ——ntasks—per—node=24 ——time=00:10:00 ./mpi_progl
srun —N4 ——ntasks—per—node=24 ——time=00:20:00 ./mpi_prog2

run 2 job steps in parallel
srun —N1 —n24 . /mpi_prog3 &
srun —N3 ——ntasks—per—node=24 ./mpi_prog4 &

4.5.5 Dependency Chains

SLURM supports dependency chains which are collections of batch jobs with defined
dependencies. Job dependencies can be defined using the --dependency argument of
sbatch.

#!/bin/bash

#SBATCH ——dependency=<type>

The available dependency types for job chains are:

40

e after:<jobID> the job starts when another job with <jobID> begun execution.
e afterany:<jobID> the job starts when another job with <jobID> terminates.

e afterok:<jobID> the job starts when another job with <jobID> terminates suc-
cessfully.

e afternotok:<jobID> the job starts when another job with <jobID> terminates
with failure.

e singleton the job starts when any previous job with the same job name and user
terminates.

4.5.6 Job Arrays

SLURM supports job arrays, which are mechanisms for submitting and managing collec-
tions of similar jobs quickly and easily. Job arrays are only supported for the sbatch
command and are defined using the option —-array=<indices>. All jobs use the same
initial options (e.g. the number of nodes, the time limit, etc.), however, an individual set-
ting for each job is possible since each part of a job array has access to the environment
variable SLURM_ARRAY_TASK_ID. For example the following job submission

bash$ sbatch ——array=1—3 —N1 slurm_job_script.sh

will generate a job array containing three jobs. Assuming that the jobID reported by
sbatch is 42, then the parts of the array will have the following environment variables set:

array index 1
SLURM_JOBID=42
SLURM_ARRAY_JOB_ID=42
SLURM_ARRAY_TASK_ID=1

array index 2
SLURM_JOBID=43
SLURM_ARRAY_JOB_ID=42
SLURM_ARRAY_TASK_ID=2

array index 3
SLURM_JOBID=44
SLURM_ARRAY_JOB_ID=42
SLURM_ARRAY_TASK_ID=3

Some additional options are available to specify the stdin, stdout, and stderr file names:
option %A will be replaced with the value of SLURM_ARRAY_JOB_ID and option %a will be
replaced by the value of SLURM_ARRAY_TASK_ID.

The following example creates a job array of 42 jobs with indices 0-41. Each job will
run on a a separate node with 24 tasks per node. Depending on the queuing situation,
some jobs may be running and some may be waiting in the queue. Each part of the job
array will execute the same binary but with the different input files.

#!/bin /bash

#SBATCH ——nodes=1
#SBATCH ——partition=compute

41

#SBATCH ——output=prog—%A _%a.out
#SBATCH ——error=prog—%A_%a.err
#SBATCH ——time=00:30:00
#SBATCH ——array=0—41

#SBATCH ——account=x12345

srun ——ntasks—per—node=24 ./prog input_${SLURM_ARRAY_TASK_ID}.txt

4.6 SLURM Command Examples

4.6.1 Query Commands

Normally, the jobs pass through several states during their life-cycle. Typical job states
from the submission until the completion are: PENDING (PD), RUNNING (R), COM-
PLETING (CG) and COMPLETED (CD). However there are plenty of possible job states
for SLURM. The following describes the most common states:

CA CANCELLED : The job was explicitly cancelled by the user or an administrator.
The job may or may not have been initiated.

CD COMPLETED : The job has terminated all processes on all nodes.

CF CONFIGURING : The job has allocated its required resources, but is waiting for
them to become ready for use.

CG COMPLETING : The job is in the process of completing. Some processes on some
nodes may still be active.

F FAILED : The job terminated with a non-zero exit code or other failure conditions.
NF NODE_FAIL : The job terminated due to the failure of one or more allocated nodes.
PD PENDING : The job is awaiting for the resource allocation.

R RUNNING : The job currently has an allocation.

TO TIMEOUT : The job terminated upon reaching its walltime limit.

Some examples of how users can query their jobs status are as follows:

e List all jobs submitted to SLURM

bash$ squeue

e List all jobs submitted by you

bash$ squeue —u $USER

e Check available partitions and nodes

bash$ sinfo

42

Depending on the options, the sinfo command will print the states of the partitions
and the nodes. The partitions may be in state UP, DOWN or INACTIVE. The
UP state means that a partition will accept new submissions and the jobs will be
scheduled. The DOWN state allows submissions to a partition but the jobs will not
be scheduled. The INACTIVE state means that not submissions are allowed.

The nodes can also be in various states. Node state codes may be shortened ac-
cording to the size of the printed field. The following shows the most common node
states:

alloc ALLOCATED : The node has been allocated.

comp COMPLETING : The job associated with this node is in the state of COM-
PLETING.

down DOWN : The node is unavailable for use.

drain DRAINING , DRAINED : While in the DRAINING state, any running job on
the node will be allowed to run until completion. After that it turn into the
DRAINED state, such that the node will be unavailable for use.

idle IDLE : The node is not allocated to any jobs and is available for use.
maint MAINT : The node is currently in a reservation with a flag of maintenance.
resv. RESERVED : The node is in an advanced reservation and not generally avail-

able.

e Query the configuration and limits for one specific partition (here compute)

bash$ scontrol show partition compute

e Check one node (here m10010):

bash$ scontrol show node m10010

4.6.2 Job Control

The scontrol command is primarily used by the administrators to manage SLURM’s
configuration. However, it provides also some functionality for the users to manage jobs
and get some information about the system configuration.

e Show information about the job 4242

bash$ scontrol show job 4242

e Cancel the job with SLURM Jobld 4711

bash$ scancel 4711

e Cancel all your jobs

bash$ scancel —u $USER

e Display status information of running job 4242

bash$ sstat —j 4242

43

sstat provides various status information (e.g. CPU time, Virtual Memory (VM)
usage, Resident Set Size (RSS), Disk I/O etc.) for running jobs. The metrics of
interest can be specified using option --format or -o (s. next example).

e Display the selected status information of running job 4242

bash$ sstat —o JobID,AveCPU,AvePages,MaxRSS,MaxVMsize —] 4242

For a list of all available metrics use the option ——helpformat or look into sstat man f
bash$ sstat ——helpformat

bash$ man sstat

e Hold the pending job with SLURM Jobld 5711

bash$ scontrol hold 5711

bash$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
5711 compute tst_job b123456 PD 0:00 1 (JobHeldUser)

e Release the job with SLURM Jobld 5711

bash$ scontrol release 5711

4.6.3 Accounting Commands

With sacct, one can get the accounting information and data for the jobs and jobsteps
that are stored in SLURM’s accounting database. SLURM stores the history of all jobs
in the database, but each user has permissions to check only his/her own jobs.

Show the job information in long format for the default period (starting from 00:00
today until now):

bash$ sacct —1

Show only job information (without jobsteps) starting from the defined date until now:

bash$ sacct —S 2015—-01—-07T00:42:00 —X

Show job information with a different format and specified time frame:

bash$ sacct —X —u b123456 —format="jobid ,nnodes, nodelist ,state ,exit”
—S 2015-01-01 —E 2015—-31—-01T23:59:59

The sacctmgr command is mainly used by the administrators to view or modify the
accounting information and data in the accounting database. This command provides
also an interface with limited permissions to the users for some querying actions. The
most useful command is to show all associations a user is allowed to submit jobs:

bash$ sacctmgr show assoc where user=<user_id >

List all or the specified QoS:

bash$ sacctmgr show qos [where name=<qos_name >]

44

age

Chapter 5

Data Processing

A part of the Mistral cluster is reserved for data processing and analysis and can be
deployed for tasks like

e time and memory intensive data processing using CDO, NCO, netCDF, afterburner,
tar, gzip/bzip, etc.

e data analysis and simple visualization using MATLAB, Mathematica, R, Python,
Scilab, NCL, GrADS, FERRET, IDL, GMT, etc.

e archiving and downloading data to/from HPSS tape archive via pftp
e connecting to external servers via sftp, lftp, scp, globus toolkit
e downloading data from CERA/WDCC data base using jblob

and so on.

Only the advanced visualization applications like Avizo Green, Avizo Earth, Paraview,
Vapor etc. need to run on Mistral nodes dedicated for 3D visualization, as described
in the section Visualization on Mistral (see https://www.dkrz.de/Nutzerportal-en/
doku/vis/visualization-on-mistral).

Below, different procedures on how to access hardware resources provided for data
processing and analysis are described. In general, the following three ways are possible:

e Use interactive nodes mistralpp.dkrz.de.
e Start an interactive session on a node in the SLURM partition prepost.

e Submit a batch job to the SLURM partition prepost or shared.

Interactive nodes mistralpp

Five nodes are currently available for interactive data processing and analysis. The nodes
can directly be accessed via ssh:

bash$ ssh —X <userid>@mistralpp.dkrz.de

On the interactive nodes, resources (memory and CPU) are shared among all users logged
into the node. This might negatively influence the node performance and extend the run
time of applications.

45

https://www.dkrz.de/Nutzerportal-en/doku/vis/visualization-on-mistral
https://www.dkrz.de/Nutzerportal-en/doku/vis/visualization-on-mistral

Interactive use of nodes managed by SLURM

To avoid oversubscribing nodes on mistralpp and obtain dedicated resources for your inter-
active work, you can make a resource allocation using the SLURM salloc command and log
into the allocated node via ssh. The example below illustrates this approach. The name
of the allocated node is set by SLURM in the environment variable SLURM_JOB_NODELIST.

bash$ salloc —p prepost —A xz0123 —n 1 —t 60 — /bin/bash —c¢ ’ssh —X
$SLURM_JOB_NODELIST”’

Please take care to adapt the settings in the example above (project account (option -A),
number of tasks (option -n), wall-clock time (option -t) etc.) to your actual needs.

For hints on how to set the default SLURM account and define a shell alias or function
to allocate resources and log into a node in one step, please refer to our Mistral Tips and
Tricks website.

Submitting a batch job

In case your data processing programs do not require an interactive control, you can also
submit a regular batch job. Below, there is a batch script example for a job that will use
one core on one node in the partition prepost for twenty minutes. Insert your own job
name, project account, file names for the standard output and error output, resources
requirements, and the program to be executed.

#!/bin /bash

#SBATCH —J my_job # Specify job name

#SBATCH —p prepost # Use partition prepost

#SBATCH —N 1 # Specify number of nodes

#SBATCH —n 1 # Specify max. number of tasks to be invoked
#SBATCH —t 20 # Set a limit on the total run time

#SBATCH —A xz0123 # Charge resources on this project account

#SBATCH —o my_job . o%)j # File name for standard output
#SBATCH —e my_job . e%)] # File name for standard error output

Execute a serial program, e.g.
ncl my_script.ncl

46

	Cluster Information
	Introduction
	Cluster Nodes
	Data Management - Filesystems
	Access to the Cluster
	Login
	Password
	Login Shell

	Software Environment
	Modules
	The Available Modules
	Using the Module Command

	Compiler and MPI
	Compilation Examples
	Recommendations

	Batch System - SLURM
	SLURM Overview
	SLURM Partitions
	Job Limits - QoS
	Priorities and Accounting
	Job Environment

	SLURM Usage
	SLURM Command Overview
	Allocation Commands
	Interactive Jobs
	Spawning Command
	Batch Jobs

	Job Script Examples
	Adapting job-scripts for MISTRAL phase2
	Advanced SLURM Features
	Hyper-Threading (HT)
	Process and Thread Binding
	MPMD
	Job Steps
	Dependency Chains
	Job Arrays

	SLURM Command Examples
	Query Commands
	Job Control
	Accounting Commands

	Data Processing

