

bullx scs 4 R4

ex
tr
em

e
co

m
p
ut

in
g

bullx MPI User's Guide

REFERENCE
86 A2 83FK 03

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright © Bull SAS 2014

Printed in France

Trademarks and Acknowledgements

We acknowledge the rights of the proprietors of the trademarks mentioned in this manual.

All brand names and software and hardware product names are subject to trademark and/or patent
protection.

Quoting of brand and product names is for information purposes only and does not represent trademark
and/or patent misuse.

Software

March 2014

Bull Cedoc
357 avenue Patton
BP 20845
49008 Angers Cedex 01
FRANCE

The information in this document is subject to change without notice. Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

 Preface i

Table of Contents

Preface ... iii

Intended Readers .. iii

Highlighting ... iii

Related Publications .. iv

Chapter 1. Introduction to bullx MPI Development Environment ...1

1.1 The Program Execution Environment .. 1

1.1.1 Parallel Processing and MPI libraries .. 1

1.1.2 Resource Management ... 1

1.1.3 Batch Management ... 2

1.1.4 Linux Tools ... 2

1.1.5 Modules ... 2

1.2 Data and Files .. 3

Chapter 2. Using bullx MPI Parallel Library ..5

2.1 Overview ... 5

2.1.1 OpenMPI Version .. 5

2.1.2 Quick Start for bullx MPI .. 6

2.2 Compiling with bullx MPI ... 7

2.3 Running with bullx MPI .. 8

2.4 Binding with bullx MPI ... 9

2.4.1 Binding a Full MPI Application .. 9

2.4.2 Binding Hybrid Applications ... 9

2.5 Configuring and Tuning bullx MPI ... 10

2.5.1 Obtaining Details of the MPI Configuration ... 10

2.5.2 Setting the MCA Parameters ... 10

2.5.3 Parameters Profiles .. 12

2.5.4 Protecting MCA System-wide Parameters .. 13

2.6 MPI/IO with bullx MPI ... 14

2.6.1 MPI/IO and NFS File Systems ... 14

2.6.2 MPI/IO on Lustre ... 15

2.7 Extra Functionalities ... 17

2.7.1 Device Failover ... 17

2.7.2 Deadlock Detection ... 17

2.7.3 GHC Component .. 18

2.7.4 WDC Framework .. 18

2.7.5 KNEM Module .. 21

ii bullx MPI User's Guide

2.7.6 Carto: Managing Multi InfiniBand HCA Systems .. 21

2.7.7 Mellanox FCA .. 24

2.7.8 bullx MPI Hyperthreading Support ... 25

2.7.9 bullx MPI GNU Compilers Support .. 25

2.8 Using Accelerators in MPI Programs .. 26

2.8.1 NVIDIA GPUs ... 26

2.8.2 Xeon Phi (MIC) .. 27

2.8.3 bullx MPI and Accelerators ... 28

 Preface iii

Preface
The purpose of this guide is to describe bullx MPI, which is the Message Passing Interface
parallel library recommended for extreme computing development applications.

The installation of all hardware and software components of the cluster must have been
completed. The cluster Administrator must have carried out basic administration tasks
(creation of users, definition of the file systems, network configuration, etc.).

Note You are advised to consult the Bull Support Web site for the most up-to-date product
information, documentation, firmware updates, software fixes and service offers:
http://support.bull.com

Intended Readers
This guide is aimed at MPI Application Developers of bullx supercomputer suite clusters.

Highlighting
The following highlighting conventions are used in this guide:

Bold Identifies the following:
 Interface objects such as menu names, labels, buttons and icons.
 File, directory and path names.
 Keywords to which particular attention must be paid.

Italic Identifies references such as manuals or URLs.

monospace Identifies portions of program codes, command lines, or messages
displayed in command windows.

< > Identifies parameters to be supplied by the user.

Commands entered by the user

System messages displayed on the screen

 WARNING
A Warning notice indicates an action that could cause damage to a program, device,
system, or data.

http://support.bull.com/

iv bullx MPI User's Guide

Related Publications

mportant The Software Release Bulletin (SRB) delivered with your version of bullx

supercomputer suite must be read first.

 Software Release Bulletin, 86 A2 91FK

 Documentation Overview, 86 A2 90FK

 Installation and Configuration Guide, 86 A2 74FK

 Extreme Pack - Installation and Configuration Guide, 86 A2 75FK

 bullx MC Administration Guide, 86 A2 76FK

 bullx MC Monitoring Guide, 86 A2 77FK

 bullx MC Power Management Guide, 86 A2 78FK

 bullx MC Storage Guide, 86 A2 79FK

 bullx MC InfiniBand Guide, 86 A2 80FK

 bullx MC Ethernet Guide, 86 A2 82FK

 bullx MC Security Guide, 86 A2 81FK

 bullx EP Administration Guide, 86 A2 88FK

 bullx PFS Administration Guide, 86 A2 86FK

 bullx MPI User's Guide, 86 A2 83FK

 bullx DE User’s Guide, 86 A2 84FK

 bullx BM User's Guide, 86 A2 85FK

 bullx MM Argos User's Guide, 86 A2 87FK

 Extended Offer Administration Guide, 86 A2 89FK

 bullx scs 4 R4 Documentation Portfolio, 86 AP 23PA

 bullx scs 4 R4 Documentation Set, 86 AP 33PA

This list is not exhaustive. Useful documentation is supplied on the Resource &
Documentation CD(s) delivered with your system. You are strongly advised to refer carefully
to this documentation before proceeding to configure, use, maintain, or update your
system.

 Chapter 1. Introduction to bullx MPI Development Environment 1

Chapter 1. Introduction to bullx MPI Development
Environment

1.1 The Program Execution Environment
When a user logs onto the system, the login session is directed to one of several nodes
where the user may then develop and execute their applications. Applications can be
executed on other cluster nodes apart from the user login system. For development, the
environment consists of various components described in this section.

1.1.1 Parallel Processing and MPI libraries

bullx MPI is a set of tools and libraries that provide support to users throughout a project,
from design to production.

bullx MPI is based on OpenMPI, the open source MPI 2.1 standards-compliant library.
bullx MPI enables scalability for tens of thousands of cores with functions such as:

 Network-aware collective operations

 Fine grained process affinity thanks to integration with bullx Batch Manager

 Zero memory copy for intra-node communication

Other features, such as effective abnormal communication pattern detection and multi-path
network failover, have been implemented to enhance the reliability and resilience of
bullx MPI.

See Chapter 2 for more details.

1.1.2 Resource Management

The resource manager is responsible for the allocation of resources to jobs. The resources
are provided by nodes that are designated as compute resources. Processes of the job are
assigned to and executed on these allocated resources.

bullx Batch Manager is based on SLURM (Simple Linux Utility for Resource Management)
and has the following functions.
 It allocates compute resources, in terms of processing power and Compute Nodes to

jobs for specified periods of time. If required the resources may be allocated
exclusively with priorities set for jobs.

 It launches and monitors jobs on sets of allocated nodes, and will also resolve any
resource conflicts between pending jobs.

 It includes new scheduling policies, such as fair-sharing, pre-emptive and backfilling
policies

 It implements topology-aware resource allocation aimed at optimizing job
performance, by taking into consideration the topology and interconnect performance.

See The bullx BM User's Guide for more information.

2 bullx MPI User's Guide

1.1.3 Batch Management

The batch manager is responsible for handling batch jobs for extreme computing clusters.

PBS-Professional, a sophisticated, scalable, robust Batch Manager from Altair Engineering
is supported as a standard, and can be used as batch manager. PBS Pro can also be
integrated with the MPI libraries.

mportant PBS Pro does not work with SLURM and should only be installed on clusters

which do not use SLURM.

See Extended Offer Administration Guide for details regarding the installation and
configuration of
PBS-Professional.

1.1.4 Linux Tools

Standard Linux tools such as GCC (a collection of free compilers that can compile C/C++
and FORTRAN), GDB Gnu Debugger, and other third-party tools including the Intel
FORTRAN Compiler, the Intel C Compiler, Intel MKL libraries and Intel Debugger IDB and
the padb parallel debugger.

1.1.5 Modules

Modules software provides a means for predefining and changing environments. Each one
includes a compiler, a debugger and library releases, which are compatible with each
other. It is easy to invoke one given environment in order to perform tests and then
compare the results with other environments.

See The bullx DE User’s Guide for details on Modules.

 Chapter 1. Introduction to bullx MPI Development Environment 3

1.2 Data and Files
bullx Parallel File System is based on the open source parallel file system, Lustre. Specific
features have been developed and integrated to improve scalability, performance and
resilience:
 Support of Lustre servers with twin InfiniBand links
 Support for fault-tolerant cells, e.g. Lustre servers with up to 4 nodes
 Silent deadlock and denied access event detection thanks to integration with bullx

Management Center
 Integration of Lustre’s dedicated Shine administration tool, with bullx Management

Center

Application file I/O operations may be performed using locally mounted storage devices,
or alternatively, on remote storage devices using either Lustre or the NFS file systems.

See The bullx PFS Administration Guide for more information on Lustre.

4 bullx MPI User's Guide

 Chapter 2. Using bullx MPI Parallel Library 5

Chapter 2. Using bullx MPI Parallel Library
A common approach to parallel programming is to use a message passing library, where
a process uses library calls to exchange messages (information) with another process. This
message passing allows processes running on multiple processors to cooperate.

Simply stated, a MPI (Message Passing Interface) provides a standard for writing message-
passing programs. A MPI application is a set of autonomous processes, each one running
its own code, and communicating with each other through calls to subroutines of the MPI
library.

This chapter describes the MPI interface used with bullx Extreme Computing:

Programming with MPI

It is not in the scope of this guide to describe how to program with MPI. Please, refer to the
web, where you will find complete information.

2.1 Overview
bullx MPI is based on the Open Source Open MPI project. Open MPI is an MPI-2
implementation that is developed and maintained by a consortium of academic, research,
and industry partners. Open MPI offers advantages for system and software vendors,
application developers and computer science researchers.
This library enables dynamic communication with different device libraries, including
InfiniBand (IB) interconnects, socket Ethernet/IB devices or single machine devices.
bullx MPI conforms to the MPI-2 standard and supports up to the MPI_THREAD_SERIALIZED
level.

Note As bullx MPI is based on Open MPI, most of the documentation available for Open MPI
also applies to bullx MPI. You can therefore refer to http://open-mpi.org/faq/ for more
detailed information.

2.1.1 OpenMPI Version

The OpenMPI version from which bullx MPI derivates, is indicated in the file
/opt/mpi/bullxmpi/<current_version>/share/doc/bullxmpi-
<current_version>/NEWS.BULL.

To display the OpenMPI version, assuming the current bullx MPI version is 1.2.7.1, enter:

head /opt/mpi/bullxmpi/1.2.7.1/share/doc/bullxmpi-1.2.7.1/NEWS.BULL

=============================

bullxmpi 1.2.7 Release Notes

=============================

Based on Open MPI 1.6.4.

See NEWS file for more informations

bullx MPI Additional Features

=============================

http://open-mpi.org/faq/

6 bullx MPI User's Guide

2.1.2 Quick Start for bullx MPI

bullx MPI is usually installed in the /opt/mpi/bullxmpi/<version> directory.

To use it, you can either:

 Use the mpivars.{sh,csh} environment setting file, which may be sourced from the
${bullxmpi_install_path}/bin directory by a user or added to the profile for all users by
the administrator

 Or use module files bundled with bullx MPI.

mportant If you are using Intel compilers, you have to set the compilers environment before

setting the bullx MPI environment.

 Chapter 2. Using bullx MPI Parallel Library 7

2.2 Compiling with bullx MPI
MPI applications should be compiled using bullx MPI wrappers:

C programs mpicc your-code.c

C++ programs mpiCC your-code.cc
or
mpic++ your-code.cc (for case-insensitive file systems)

F77 programs mpif77 your-code.f

F90 programs mpif90 your-code.f90

Wrappers to compilers simply add various command line flags and invoke a back-end
compiler; they are not compilers in themselves.

bullx MPI currently uses Intel C and Fortran compilers to compile MPI applications.

For each wrapper, there is a file named <wrapper>-data.txt located in
/opt/mpi/bullxmpi/<version>/share/bullxmpi which defines the default parameters for
the compilation.

Additionally, you can export environment variables to override these settings, for example:
OMPI_MPICC=gcc
OMPI_MPICXX=g++

See The Compiling MPI applications FAQ available from http://www.open-mpi.org for more
information.

http://www.open-mpi.org/

8 bullx MPI User's Guide

2.3 Running with bullx MPI
bullx MPI comes with a launch command: mpirun.

mpirun is a unified processes launcher. It is highly integrated with various batch scheduling
systems, auto-detecting its environment and acting accordingly.

Running without a Batch Scheduler

mpirun can be used without a batch scheduler. You only need to specify the Compute
Nodes list:

$ cat hostlist

node1

node2

$ mpirun -hostfile hostlist -np 4 ./a.out

Running with SLURM

mpirun is to be run inside a SLURM allocation. It will auto-detect the number of cores and
the node list. Hence, mpirun needs no arguments.

salloc -N 1 -n 2 mpirun ./a.out

You can also launch jobs using srun with the port reservation mechanism:

srun -N 1 -n 2 ./a.out

Notes
 From bullx scs 4 R4, the --resv-ports option is replaced by --mpi=pmi2. This option is

not needed if the option MpiDefault=pmi2 is set in slurm.conf. To know if this option is
set, enter:
 scontrol show config|grep MpiDefault

 MPI-2 dynamic processes are not supported by srun.

 The port reservation feature must be enabled in slurm.conf adding a line of this type:
MpiParams=ports=13000-14000

Running with PBS Professional

To launch a job in a PBS environment, just use mpirun with your submission:

MPI-2 dynamic processes are not supported by srun.

#!/bin/bash

#PBS -l select=2:ncpus=1

mpirun ./a.out

 Chapter 2. Using bullx MPI Parallel Library 9

2.4 Binding with bullx MPI

Note The examples will be for 2 socket and 8 cores per socket nodes.

2.4.1 Binding a Full MPI Application

Binding with miprun

Note By using the --report-bindings option, mpirun will display a view of the binding.

By default, mpirun binds each process to one core. So, in most cases, mpirun needs no
arguments.
The following command:

salloc -N2 -n32 mpirun ./a.out

is equivalent to:

salloc -N2 -n32 mpirun --bycore --bind-to-core ./a.out

Binding with srun

srun -N2 -n32 --distribution=block:block ./a.out

2.4.2 Binding Hybrid Applications

Lot of applications use hybrid MPI/OpenMP parallelization. In this case you have to bind
MPI process on multiple cores, as described in the following examples.

 To bind to all cores of an entire socket with mpirun:

Note The --exclusive SLURM option is mandatory when binding hybrid applications with mpirun.

salloc -N1 -n2 --exclusive mpirun --bind-to-socket --bysocket ./a.out

 To bind to all cores of an entire socket with srun:

srun -N1 -n2 --distribution=block:cyclic --cpu_bind=sockets ./a.out

 To bind to 4 cores in order to have 4 available threads per MPI process with mpirun:

salloc -N1 -n4 --exclusive mpirun --cpus-per-rank 4 ./a.out

 To bind to 4 cores in order to have 4 available threads per MPI process with srun:

srun -N1 -n4 -c4 --distribution=block:block --cpu_bind=cores ./a.out

10 bullx MPI User's Guide

2.5 Configuring and Tuning bullx MPI
Parameters in bullx MPI are set using the MCA (Modular Component Architecture)
subsystem.

2.5.1 Obtaining Details of the MPI Configuration

The ompi_info command is used to obtain the details of your bullx MPI installation -
components detected, compilers used, and even the features enabled. The ompi_info -a
command can also be used; this adds the list of the MCA subsystem parameters at the end
of the output.

Output Example

MCA btl: parameter "btl" (current value: <none>, data source: default value)

Default selection set of components for the btl framework (<none> means use all

components that can be found)

The parameter descriptions are defined using the following template:

MCA <section> : parameter “<param>” (current value: <val>, data source: <source>)

 <Description>

2.5.2 Setting the MCA Parameters

MCA parameters can be set in 3 different ways: Command Line, Environment Variables
and Files.

Note The parameters are searched in the following order - Command Line, Environment
Variables and Files.

Command Line

The Command line is the highest-precedence method for setting MCA parameters. For
example:

shell$ mpirun --mca btl self,sm,openib -np 4 a.out

This sets the MCA parameter btl to the value of self,sm,openib before running a.out using
four processes. In general, the format used for the command line is:
--mca <param_name> <value>

Note When setting multi-word values, you need to use quotes to ensure that the shell and bullx
MPI understand that they are a single value. For example:

shell$ mpirun --mca param "value with multiple words" ...

 Chapter 2. Using bullx MPI Parallel Library 11

Environment Variables

After the command line, environment variables are searched. Any environment variable
named OMPI_MCA_<param_name> will be used. For example, the following has the
same effect as the previous example (for sh-flavored shells):

shell$ OMPI_MCA_btl=self,sm,openib

shell$ export OMPI_MCA_btl

shell$ mpirun -np 4 a.out

Or, for csh-flavored shells:

shell% setenv OMPI_MCA_btl “self,sm,openib”

shell% mpirun -np 4 a.out

Note When setting environment variables to values with multiple words quotes should be used,
as below:
sh-flavored shells

shell$ OMPI_MCA_param="value with multiple words"

csh-flavored shells

shell% setenv OMPI_MCA_param "value with multiple words"

Files

Finally, simple text files can be used to set MCA parameter values. Parameters are set one
per line (comments are permitted). For example:

This is a comment

Set the same MCA parameter as in previous examples

mpi_show_handle_leaks = 1

Note Quotes are not necessary for setting multi-word values in MCA parameter files. Indeed, if
you use quotes in the MCA parameter file, they will be treated as part of the value itself.

Example

The following two values are different:

param1 = value with multiple words

param2 = "value with multiple words"

By default, two files are searched (in order):

1. $HOME/openmpi/mca-params.conf: The user-supplied set of values takes the highest
precedence.

2. /opt/mpi/bullxmpi/x.x.x/etc/openmpi-mca-params.conf: The system-supplied set of
values has a lower precedence.

More specifically, the MCA parameter mca_param_files specifies a colon-delimited path of
files to search for MCA parameters. Files to the left have lower precedence; files to the right
are higher precedence.

Keep in mind that, just like components, these parameter files are only relevant where they
are visible. Specifically, bullx MPI does not read all the values from these files during start-
up and then send them to all nodes for the job. The files are read on each node during the
start-up for each process in turn. This is intentional: it allows each node to be customized
separately, which is especially relevant in heterogeneous environments.

12 bullx MPI User's Guide

2.5.3 Parameters Profiles

MCA parameters can also be specified using profiles. These are coherent sets of MCA
parameters that can be used under certain circumstances, for example for a large-scale
application, or for a micro-benchmark.
These parameters should be declared in a file that is then set for the mpirun command,
using one of the following syntaxes (assuming that the MCA parameters profile is in the
my_profile.conf file):

shell$ mpirun -p my_profile.conf ... a.out

or

shell$ mpirun --param-profile my_profile.conf ... a.out

or

shell% export OMPI_MCA_mca_param_profile=my_profile.conf

shell% srun ... a.out

 Chapter 2. Using bullx MPI Parallel Library 13

2.5.4 Protecting MCA System-wide Parameters

If necessary, the System Administrator is able to prevent users from overwriting the default
MCA system-wide parameter settings. These parameters should be declared in the
etc/openmpi-priv-mca-params.conf privileged file.

Note This file has the same format as the etc/openmpi-mca-params.conf file, i.e.
<param> = <value>.
Parameters declared in this file are to be removed from the default (non-privileged)
etc/openmpi-mca-params.conf.

The MCA parameters declared in the etc/openmpi-priv-mca-params.conf file are
considered as non overridable, and if (re)set in one of the following places below then a
warning message from Open MPI will appear:

 etc/openmpi-mca-params.conf

 $HOME/openmpi/mca-params.conf

 Environment (by setting the OMPI_MCA_<param> environment variable)

 Command line (via the -mca option with mpirun)

The message will appear as below:

WARNING: An MCA parameter file attempted to override the privileged

MCA parameter originally set in /etc/openmpi-priv-mca-params.conf.

 Privileged parameter: btl

 MCA configuration file: /etc/openmpi-mca-params.conf

The overriding value was ignored.

The new parameter value is not taken into account: the test is run, using the value set in the
MCA system-wide parameters file.

Effect of the mca_param_files Parameter

Even if the mca_param_files MCA parameter is used to change the search path for the
parameters configuration files, the privileged parameters configuration file is read by
default, even if not referenced in the specified path. For example, if the user sets:

shell$ mpirun --mca mca_param_file “/home/myself/file1:/home/myself/file2 -np 4

a.out

The files that are fetched for MCA parameters are:
 /opt/mpi/bullxmpi/x.x.x/etc/openmpi-priv-mca-params.conf
 /home/myself/file1
 /home/myself/file2

This prevents users from unintentionally bypassing system-wide parameters protection.

Note This protection does not make it impossible to circumvent (for example by rebuilding a
library in the home directory). To prevent users from doing this, it is highly recommended to
improve the message in share/bullxmpi/help-mca-param.txt (tag [privileged-param-file])
adding a custom message at the end.

14 bullx MPI User's Guide

2.6 MPI/IO with bullx MPI
The following sections describe how to use bullx MPI MPI/IO for the NFS and Lustre
distributed file systems.

2.6.1 MPI/IO and NFS File Systems

Check the Mount options

To use bullx MPI and NFS together, the shared NFS directory must be mounted with the no
attribute caching (noac) option added. Run the command below on the NFS client
machines to check this:

mount | grep home_nfs

Note /home_nfs is the name of the mount point.

The result for /home_nfs should appear as below:

nfs_server:/home_nfs on /home_nfs type nfs

(rw,noac,lookupcache=positive,addr=xx.xxx.xx.xx)

If the noac and lookupcache=positive flags are not present, ask your System Administrator
to add them. If the performance for I/O Operations is impacted, it is possible to improve
performance by exporting the NFS directory from the NFS server with the async option.

Run the command below on the NFS server to check this:

grep home_nfs /etc/exports

The exports entry for /home_nfs should appear as below:

/home_nfs *(rw,async)

If the async option is not present, ask your System Administrator to add it.

Note The System Administrator will have to confirm that there is no negative impact when the
async option is added.

 Chapter 2. Using bullx MPI Parallel Library 15

2.6.2 MPI/IO on Lustre

Check the Mount options

To use bullx MPI and Lustre together, the shared Lustre directory must be mounted with the
locking support (flock) option included. Run the command below on the Lustre client
machines to check this:

mount | grep lustre_fs

Note /lustre_fs is the name of the mount point.

The result for /lustre_fs should appear as below:

lustre_srv-ic0@o2ib:/lustre_fs on /mnt/lustre_fs type lustre

(rw,acl,user_xattr,flock)

If the flock option is not present, ask your System Administrator to add it.

Check the User rights for the Directory

The User must have the read/write rights for the directory that he wants to access.

How to Configure the stripe_count of the File

An important parameter to improve bullx MPI performance with a Lustre file is the stripe
count for the file. It configures the parallelization level for the I/O operations for the Lustre
file. The best value to set for the stripe count is a multiple of the number of Compute Nodes
on which the job runs.
For example, if the job runs on 10 nodes, a value of 10 or 20 for the stripe count means
that it is correctly configured. A value of 5 is OK, because 5 processes can perform I/O
operations, but a value of 1 is a poor value, because only 1 process will perform the I/O
operations.
Run the following command to display the stripe count for a file (/mnt/lustre/lfs_file is the
path to the Lustre file):

lfs getstripe -c /mnt/lustre/lfs_file

This will give a result, as shown in below, where the stripe count for the file is 10:

10

There are four different ways to set the stripe count. They are listed below in order of
priority: if the first one is used, then the other three are not valid.

1. If the file still exists, it is not possible to change the stripe count, but you can create a
new file, copy the original file into the new one, and then rename the new file with the
original file name, as shown in the example commands below:

lfs setstripe -c 20 /mnt/lustre/lfs_file.new

cp /mnt/lustre/lfs_file /mnt/lustre/lfs_file.new

mv /mnt/lustre/lfs_file.new /mnt/lustre/lfs_file

lfs getstripe -c /mnt/lustre/lfs_file

20

The stripe count for this file is set to 20.

16 bullx MPI User's Guide

2. It is possible to force the stripe count value for <filename> when it is created within the
application, by setting the striping_factor hint before the MPI_File_open() call in the
source file, as shown in the example below.

MPI_Info_set(info, «striping_factor », 32);

MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);

This will set the stripe count to 32.

3. It is possible to configure the stripe count using the hint file:

export ROMIO_HINTS=$HOME/hints

cat $HOME/hints

This will give a result, as shown in the example below, where the stripe count for the
file is 32:

striping_factor 32

4. When the I/O application calls the MPI_File_open(comm, filename, amode, info, &fh)
function to create a file (amode contains the MPI_MODE_CREATE flag), bullx MPI will
set the stripe count using the best option available, using the rules below;
 If N (the number of Compute Nodes of the communicator comm) is less than NO

(the number of OSTs), bullx MPI sets the stripe count to the highest value possible
for the multiples of N that is less than NO.

 Or bullx MPI will set the stripe count to number of OSTs.

Examples

In these examples, N is the Number of Compute Nodes of the comm communicator.

 N = 10, Number of OSTs = 15,

==> bullx MPI sets the stripe count to 10

 N = 10, Number of OSTs = 32,

==> bullx MPI sets the stripe count to 30

 N = 100, Number of OSTs = 32,

==> bullx MPI sets the stripe count to 32

Note You can disable the automatic stripe count calculation by setting the mca parameter
io_romio_optimize_stripe_count to 0. In this case bullx MPI will use the default directory
stripe count.

 Chapter 2. Using bullx MPI Parallel Library 17

2.7 Extra Functionalities
This section describes some of the extra functionalities for bullx MPI

2.7.1 Device Failover

Bull has improved Open MPI's default communication layer to add the possibility of
switching dynamically from one network to another when there is a failure.

This improvement results from a new PML component called ob1_df, which is enabled by
using the maintenance_failover.conf profile (see Section 2.5.3 Parameters Profiles)

Note ob1_df incurs an additional latency of around 0.2 µs

The default ob1 PML component is replaced by ob1_df. If a network generates a fatal error
(link down, timeout, etc.) then ob1_df will automatically switch to the next available
network.

InfiniBand Tuning

In there is an error with an InfiniBand network, the OpenIB component will try to resend
data for a significant period before returning an error, and forcing obl_df switch to the next
available port. If you would like to accelerate the switching time, reduce the
btl_openib_ib_timeout parameter. The InfiniBand timeout period can be calculated by using
the following formula:

Timeout = 4.096 microseconds * (2^btl_openib_ib_timeout)

The btl_openib_ib_timeout parameter can be set between 0 and 31.

2.7.2 Deadlock Detection

MPI polling is usually done via the use of busy loops. As most modern interconnects
communicate directly with the network card in userspace, blocked processes will keep
polling. This can be a problem for two reasons:

 It is hard to distinguish a blocked process from a communicating process.

 MPI delays result in higher CPU usage and power consumption.

To help resolve this problem, deadlock detection can be enabled. The
opal_progress_wait_count parameter indicates the number of unsuccessful polling loops
that have to pass, before the time count is started. This should be set to a reasonably high
value in order to reduce the performance impact of the time count process, e.g. 1000. The
default value of opal_progress_wait_count is -1 (disabled).

The progress_wait_trigger parameter indicates the period before an action is performed
(default 600s = 10 minutes).

Once the number of progress_wait_trigger seconds have passed without any activity, then
the opal_progress_wait_action will be performed. The program may either switch to sleep
mode (CPU usage should drop to 0% introducing micro sleeps between polls), display a
message, or do both.

18 bullx MPI User's Guide

The codes for the opal_progress_wait_action setting are below:

0x1 : Sleep

0x2 : Warn

0x3 : Sleep and Warn

The micro sleep duration is configured by using the
opal_progress_wait_action_sleep_duration parameter (default 10 ms).

2.7.3 GHC Component

GHC (Generalized Hierarchical Collective) is a component of the collective framework. It
improves the communication performance between the processes of a cluster by taking
their placement into account. This component is enabled by default.

It allows you to configure collective operations independently of each other. By default, the
configuration file is located at:
 $(INSTALLDIR)/etc/bullxmpi-ghc-rules.conf

You can specify another location by using the following parameter:

-mca coll_ghc_file_path new_ghc_configuration

2.7.4 WDC Framework

Occasionally, unusual events can occur when running an MPI application. These events are
usually not fatal errors, but just erroneous situations that manifest under unusual
circumstances. It then becomes important to notify the administrator or the user about these
unusual events. The bullx MPI runtime ensures that applications run to completion, as long
as no fatal errors occur. If the unusual events are not fatal, the bullx MPI runtime ignores
them. Even though the application successfully completes, these events may result in
significant performance degradation. This is not an issue if the unusual events are not
frequent. However, they could be a real problem if they are frequent and may often be
easily avoided.

WDC (Warning Data Capture) is a MPI framework that helps trace these unusual events by
providing proper hooks, and has a low impact on the overall performance of the
application.

Examples of events that used to be silently handled by bullx MPI, and can now be traced
via WDC:

 During an RDMA read operation, if the receive buffer is not contiguous; the protocol is
silently changed from RDMA to copy in/out.

 When the IBV_EVENT_SRQ_LIMIT_REACHED event is received, bullx MPI silently calls
a handler whose job is to resize the SRQs dynamically to be larger.

 When a fragment cannot be immediately sent, it is silently added to a list of pending
fragments so the send is retried later.

 Chapter 2. Using bullx MPI Parallel Library 19

Activating the WDC basic Component

By default, this WDC framework is disabled. It can be activated by activating one of its
components (basic or oob). Use the following MCA parameter to activate the basic
component:

-mca wdc basic

When the basic component is activated, the traces are generated locally, on each
Compute Node.

By default, the traces are generated in syslog. In order to change this behavior, use the
following MCA parameter:

-mca wdc_basic_log_output output_stream

output_stream is a comma separated list of output log streams that are written to one (or
more) of the syslog, stdout, stderr, or file outputs.

Notes If the file output stream is chosen, the traces are generated in a file called output-wdc,
and located under /tmp/<login>@<host>/<job family>/<local jobid>/<vpid>

 If the orte_tmpdir_base MCA parameter has been changed, /tmp, above, should be
changed to the new parameter value.

 Only the root user can read the syslog.

When WDC is activated, the traces might be generated frequently. In order to avoid
disturbing the MPI application performance, by default, the traces are generated only
once, during the finalize phase. Use the following MCA parameter to change this
behavior:

-mca wdc_log_at_finalize 0

In this situation, the collected events are aggregated per MPI process and only traced if a
defined threshold (counter threshold) has been reached. Another threshold (time threshold)
can be used to condition subsequent traces generation for an event that has already been
traced.

Use the following MCA parameters to change the default thresholds values:

-mca wdc_basic_cnt_thresh <c_value>

-mca wdc_basic_time_thresh <t_value in secs>

20 bullx MPI User's Guide

Activating the WDC oob Component

Use the following MCA parameter to activate the oob component:

-mca wdc oob

When the oob component is activated, the traces are relayed to the hnp. The hnp in turn is
the one that actually generates the traces into the output stream.

Note When a job is not launched by mpirun (i.e. if it is launched by srun), the traces are not
relayed to the hnp: they are instead generated locally, on each Compute Node. In this
case, the behavior is that of the basic component.

By default, the traces are generated in syslog. In order to change this behavior, use the
following MCA parameter:

-mca wdc_oob_log_output output_stream

output_stream is a comma separated list of output log streams that are written to one (or
more) of the syslog, stdout, stderr, or file outputs.

Notes If the file output stream is chosen, the traces are generated in a file called output-wdc,
and located under /tmp/<login>@<host>/<job family>/<local jobid>/<vpid >

 If the orte_tmpdir_base MCA parameter has been changed, /tmp, above, should be
changed to the new parameter value.

 Only the root user can read the syslog.

When WDC is activated, the traces might be generated frequently. In order to avoid
disturbing the MPI application performance, by default, the traces are generated only
once, during the finalize phase. Use the following MCA parameter to change this
behavior:

-mca wdc_log_at_finalize 0

In this situation, the collected events are aggregated per MPI process and only traced if a
defined threshold (counter threshold) has been reached. Another threshold (time threshold)
can be used to condition subsequent traces generation for an event that has already been
traced.

Use the following MCA parameters to change the default thresholds values:

-mca wdc_oob_cnt_thresh <c_value>

-mca wdc_oob_time_thresh <t_value in secs>

 Chapter 2. Using bullx MPI Parallel Library 21

2.7.5 KNEM Module

KNEM is a Linux kernel module enabling high-performance intra-node MPI communication
for large messages. KNEM supports asynchronous and vectorial data transfers as well as
offloading memory copies on to Intel I/OAT hardware.

Note http://runtime.bordeaux.inria.fr/knem/ for details.

Bullx MPI is compiled to use KNEM as soon as the RPM is loaded. To launch a job without
the KNEM optimization feature, start the mpirun command with the following option:

mpirun --mca btl_sm_use_knem 0 ompi_appli

2.7.6 Carto: Managing Multi InfiniBand HCA Systems

The carto framework in Open MPI enables automatic InfiniBand HCA selection based on
the MPI process localisation. It calculates the distance between the MPI process' socket and
all the HCAs in the system, and then selects the card(s) with the shortest distance.

Base configuration

To use the carto framework, you need to set the following parameters:

 carto=file

 carto_file_path=[my carto file]

 btl_openib_warn_default_gid_prefix=0

And set my carto file to the desired model.

Carto files Syntax

Carto files define graphs representing the hardware topology. To define the topology, two
keywords are used exclusively: EDGE and BRANCH_BI_DIR. These should be sufficient to
describe Bull hardware.

EDGE keyword

The EDGE keyword is used to describe basic elements such as processors, memory banks
and network cards. The syntax is:

 EDGE <Type> <Name>

Where Type may be socket, Memory or InfiniBand. Name is used for branch definitions.
All the sockets, memory banks and InfiniBand cards to be used must have a corresponding
EDGE definition.

22 bullx MPI User's Guide

BRANCH_BI_DIR Keyword

A connection in the graph can be defined between two edges with a branch. A branch
definition has the following syntax:

 BRANCH_BI_DIR <Name1> <Name2>:<Distance>

To enable Open MPI to compute all the distances required, all the edges must be
connected.

Note You do not have to describe the actual topology of your hardware. Any graph equivalent
to the reality, in terms of distance, should result in the same behavior in Open MPI. This
can substantially shorten the graph description.

Example for bullx B505 Accelerator Blade
Here is an example for a bullx B505 accelerator blade with 2 InfiniBand cards, one
connected to each socket:

 EDGE socket slot0
 EDGE socket slot1

 EDGE Memory mem0

 EDGE Memory mem1

 EDGE Infiniband mlx4_0

 EDGE Infiniband mlx4_1

 BRANCH_BI_DIR slot0 slot1:10

 BRANCH_BI_DIR slot0 mem0:10

 BRANCH_BI_DIR slot0 mlx4_0:10

 BRANCH_BI_DIR slot1 mem1:10

 BRANCH_BI_DIR slot1 mlx4_1:10

The resulting output is:

 [mem0]--10--[slot0]--10--[slot1]--10--[mem1]

 | |

 10 10

 | |

 [mlx4_0] [mlx4_1]

All socket 0 cores use the mlx4_0 card, while all socket 1 cores will use mlx4_1.

 Chapter 2. Using bullx MPI Parallel Library 23

Example for bullx S6030/S6010 Multi-module with Bull Coherent Switch

Module 0 : 4 sockets, 1 HCA

 EDGE socket slot0

 EDGE Memory mem0

 EDGE socket slot1

 EDGE Memory mem1

 EDGE socket slot2

 EDGE Memory mem2

 EDGE socket slot3

 EDGE Memory mem3

 EDGE Infiniband mlx4_0

 # Module 1 : 4 sockets, 1 HCA

 EDGE socket slot4

 EDGE Memory mem4

 EDGE socket slot5

 EDGE Memory mem5

 EDGE socket slot6

 EDGE Memory mem6

 EDGE socket slot7

 EDGE Memory mem7

 EDGE Infiniband mlx4_1

 # Module 2 : 4 sockets, 1 HCA

 EDGE socket slot8

 EDGE Memory mem8

 EDGE socket slot9

 EDGE Memory mem9

 EDGE socket slot10

 EDGE Memory mem10

 EDGE socket slot11

 EDGE Memory mem11

 EDGE Infiniband mlx4_2

 # Module 3 : 4 sockets, 1 HCA

 EDGE socket slot12

 EDGE Memory mem12

 EDGE socket slot13

 EDGE Memory mem13

 EDGE socket slot14

 EDGE Memory mem14

 EDGE socket slot15

 EDGE Memory mem15

 EDGE Infiniband mlx4_3

Note This is not the real connection topology but produces the same results for InfiniBand.

 # Module 0 : memory

 BRANCH_BI_DIR slot0 mem0:10

 BRANCH_BI_DIR slot1 mem1:10

 BRANCH_BI_DIR slot2 mem2:10

 BRANCH_BI_DIR slot3 mem3:10

 # Module 0 : inter-socket

 BRANCH_BI_DIR slot0 slot1:1

 BRANCH_BI_DIR slot0 slot2:1

 BRANCH_BI_DIR slot0 slot3:1

 # Module 0 : IO

 BRANCH_BI_DIR slot0 mlx4_0:10

 # Module 0 : inter-module

 BRANCH_BI_DIR slot0 slot4:80

 # Module 1 : memories

 BRANCH_BI_DIR slot4 mem4:10

 BRANCH_BI_DIR slot5 mem5:10

 BRANCH_BI_DIR slot6 mem6:10

 BRANCH_BI_DIR slot7 mem7:10

 # Module 1 : inter-socket

 BRANCH_BI_DIR slot4 slot5:1

 BRANCH_BI_DIR slot4 slot6:1

24 bullx MPI User's Guide

 BRANCH_BI_DIR slot4 slot7:1

 # Module 1 : IO

 BRANCH_BI_DIR slot4 mlx4_1:10

 # Module 1 : inter-module

 BRANCH_BI_DIR slot4 slot8:80

 # Module 2 : memory

 BRANCH_BI_DIR slot8 mem8:10

 BRANCH_BI_DIR slot9 mem9:10

 BRANCH_BI_DIR slot10 mem10:10

 BRANCH_BI_DIR slot11 mem11:10

 # Module 2 : inter-socket

 BRANCH_BI_DIR slot8 slot9:1

 BRANCH_BI_DIR slot8 slot10:1

 BRANCH_BI_DIR slot8 slot11:1

 # Module 2 : IO

 BRANCH_BI_DIR slot8 mlx4_2:10

 # Module 2 : inter-module

 BRANCH_BI_DIR slot8 slot12:80

 # Module 3 : memories

 BRANCH_BI_DIR slot12 mem12:10

 BRANCH_BI_DIR slot13 mem13:10

 BRANCH_BI_DIR slot14 mem14:10

 BRANCH_BI_DIR slot15 mem15:10

 # Module 3 : inter-socket

 BRANCH_BI_DIR slot12 slot13:1

 BRANCH_BI_DIR slot12 slot14:1

 BRANCH_BI_DIR slot12 slot15:1

 # Module 3 : IO

 BRANCH_BI_DIR slot12 mlx4_3:10

 # Module 3 : inter-module

 BRANCH_BI_DIR slot12 slot0:80

2.7.7 Mellanox FCA

Mellanox FCA is a component of the collective framework. It improves collectives by
offloading them in the InfiniBand fabric. To use FCA users have to:

 Ask administrators to install the FCA product on the cluster and activate the FCA
service on Management node.

 Use the bullxmpi performance_application_fca.conf profile (see Section 2.5.3
Parameters Profiles).

 Chapter 2. Using bullx MPI Parallel Library 25

2.7.8 bullx MPI Hyperthreading Support

By default Bull clusters are delivered with the hyperthreading feature disabled.

When the users activate this feature on their cluster (for performances reasons), the
bullxMPI binding (see Section 2.4 Binding with bullx MPI) options have to be modified.

OpenMPI 1.6 series does not support hyperthreading.

BullxMPI has an early support of hyperthreading by considering logical cores (also called
hardware threads) as physical cores.

To have the same binding behavior on a hyperthreaded cluster than a not hyperthreaded
cluster, you have to:

 add the --cpus-per-rank 2 option to the mpirun command

 add the --ntasks-per-node=16 option to the SLURM allocation command for a cluster
with 16 cores per node.

2.7.9 bullx MPI GNU Compilers Support

The default version of bullx MPI uses Intel compilers for the mpicc, mpiCC, mpic++, mpif77
and mpif90 wrappers.

This use of Intel compilers make the bullx MPI incompatible with the GNU compilers,
especially for GNU Fortran.

By installing the optional bullxmpi_gnu version, the bullxmpi fully supports the GNU
compilers.

To use this version, you have to load the bullxmpi_gnu module instead of the bullxmpi
module and recompile your MPI applications.

Note bullxmpi and bullxmpi_gnu modules should not be loaded at the same time.

26 bullx MPI User's Guide

2.8 Using Accelerators in MPI Programs
bullx MPI supports the Bull accelerator hardware (such as B505).

Two types of accelerator are provided with bullx scs 4:

 GPUs from NVIDIA

 Xeon Phi from Intel.

This section describes how these two accelerators can be programmed, and provides an
overview of how to use these accelerators on a bullx MPI application.

2.8.1 NVIDIA GPUs

NVIDIA provides a proprietary environment called CUDA.

See To understand the cuda environment, an extensive documentation can be found in
http://developer.nvidia.com/category/zone/cuda-zone
Documentation is also available in the CUDA installation directory:
/opt/cuda/cuda_version/doc

The CUDA programming model is based on threads. With CUDA, the programmer is
encouraged to create a very large number of threads (several thousand). Threads must be
structured into block. The card will thus schedule these threads in free compute cores.

The Khronos Group (a consortium of companies and research groups) has defined a
specification called OpenCL. OpenCL defines a programming model close to the CUDA
programming model. Because the specification is open, several companies have proposed
an implementation of OpenCL for their hardware.

The bullx scs 4 software supports OpenCL for NVIDIA accelerator. Thus, it is possible to
write an OpenCL programs and run it on NVIDIA accelerators.

http://developer.nvidia.com/category/zone/cuda-zone

 Chapter 2. Using bullx MPI Parallel Library 27

2.8.2 Xeon Phi (MIC)

Note Xeon Phi supports several execution models. In this bullx scs 4 release, we support both the
accelerator mode (also called offload or co-processor mode) and native mode for the Xeon
Phi. On native mode, there are MPI processes on Xeon Phi, where in accelerator mode
there are only MPI processes on Xeons, which delegate part of their work to their
accelerators.

The Xeon Phi accelerators are automatically configured to be fully usable in native mode:
each Xeon Phi holds an IP address. In native mode, the binaries of the application must be
compiled for the Xeon Phi architecture: Xeon Phi binaries are not compatible with the hosts
processors. Users can compile an application for the Xeon Phi by using the -mmic compiler
flag. To run a native application, it is not sufficient to compile the application. The
application must be available on the Xeon Phi. Different options exist to add software on
Xeon Phi (see the bullx MC Administration Guide, Appendix G.4).

The most flexible option is to copy the application on the Xeon Phi (via scp for example).
The Xeon Phi must be available: see Section 2.8.3 bullx MPI and Accelerators for more
information about this copy. Xeon Phi jobs can take long time to complete due to
EPILOG/PROLOG scripts.

For more information about Xeon Phi and SLURM see Section 2.9 in the bullx BM User's
Guide. For more information about using bullx MPI on Xeon Phi see Section 2.8.3. bullx
MPI and Accelerators

Although the Xeon Phis are configured for the native mode, they can be also used in co-
processor mode. To use a Xeon phi as a co-processor, the programmer should use the new
Intel LEO directives (Language Extensions for Offload). These directives, which exist for
both Fortran and C are implemented in the Intel compilers v.13.

With LEO, some directives are designed to launch data transfers, other are designed to
compile and offload code to the MIC side.

With LEO, it is possible to offload an OpenMP section: OpenMP threads will be created on
the MIC side. Because the MIC can have more than 60 cores, and each core can manage
four threads, OpenMP thread number must be adapted to this architecture. Nevertheless, it
can be challenged to develop an OpenMP section that scale on a large numbers of cores.

Intel TBB (Threading Building Blocks) and Intel Cilk Plus can also be used in C programs
(not Fortran) to program the Xeon Phi.

The description of these programming models is not in the scope of this document.
Programmer must read the Intel compiler documentation.

LEO uses a low-level library called COI. COI can be used directly to offload code to the
MIC. Nevertheless, this library is not well documented yet and we discourage the use of
this method to offload code on the MIC.

28 bullx MPI User's Guide

2.8.3 bullx MPI and Accelerators

Using accelerators with MPI means that several MPI processes will use one or more
accelerator during the program execution. There are some execution options to know in
order to have good performance for both MIC and GPU.

2.8.3.1 GPU

On GPU hardware with several CPU socket and several GPUs (like the B505 blade), best
data transfer performance is achieved when a MPI process is pinned on the CPU socket
closest to the GPU used. Several CUDA functions (such as cudaSetDevice or
cudaChooseDevice) can be used on the MPI program to choose the correct GPU.

2.8.3.2 Xeon Phi Native mode

bullxmpi-mic is a version of bullxmpi designed for jobs using Xeon Phi nodes. This means
that some or all of the MPI ranks can run on Xeon Phis, while others can run on Xeons.

To use it, one needs to load Intel compilers (at least the 2013 version) and bullxmpi-mic in
the user environment by executing the following commands (in this exact order):

source /opt/intel/composerxe/bin/compilervars.sh

module load bullxmpi-mic/bullxmpi-mic-1.2.5.1

To compile a MPI executable for Xeon Phi, mpicc (or mpif90) must be used with the -mmic
option. This generates Xeon Phi executables and selects Xeon Phi versions of shared
libraries discarding x86_64 ones. For example:

mpicc -mmic prog.c -o mic_prog

mic_prog is a Xeon Phi executable and must be available on the Xeon Phi before launching
it via mpirun. In bullx scs 4, the Xeon Phis are available after the reservation (salloc) and
after the execution of the init_mic.sh script within the reservation. Thus, users must copy the
application (mic_prog, in our example) when the Xeon Phis are available. Users can also
choose to add mic_prog on a NFS mount to avoid an explicit copy to the Xeon Phi.
For more information about NFS mount see the bullx MC Administration Guide,
Appendix G.4.

Note A Xeon Phi is available when:
- it is allocated (via salloc)
- the init_mic.sh command is launched after the allocation
Attention: init_mic.sh takes ~1 min to complete.

 Chapter 2. Using bullx MPI Parallel Library 29

Xeon Phis are generally seen as normal nodes:
 they have hostnames (following the pattern '${host_nodename}-mic${X}', with X in 0,1)
 they can be connected to by ssh
 NFS mounts can be configured by the system administrator (see Appendix G in the

bullx MC Administration Guide for details)
 MPI jobs can be launched on them

However they do not have SLURM daemons running on them (see Section 2.9 MIC
configuration and usage in the bullx BM User's Guide), which implies that:
 Xeon Phi nodes do not appear in the result of the sinfo command and cannot be

allocated directly
 they are a resource of their host nodes in SLURM. The user must allocate those hosts

nodes instead
 MPI jobs are launched on them only using mpirun, not using srun

Launching a job on Xeon Phis requires these 4 steps:

1. Allocating nodes with Xeon Phi coprocessors in SLURM using the --gres option.

2. Running /etc/slurm/init_mic.sh to ensure that Xeon Phis are available (~1min to
complete)

3. Copy the application to the Xeon Phi (if no NFS mounts or no extra overlays are
configured, see Appendix G in the bullx MC Administration Guide)

4. Running the MPI program with mpirun (because srun is not available for native Xeon
Phi applications)

At the end of the allocation, the EPILOG script is launched. The Xeon Phi node can stay
~1min in completing state (see Section 2.9 of the bullx BM User's Guide for more details).

Note Xeon Phi nodes must be automatically allocated in exclusive mode. SLURM should be
configured in this way, see Section 2.9 of the bullx BM User's Guide for more details.

For example, to launch a job on four Xeon Phi, with one MPI task per Xeon Phis, you can
allocate two nodes with two Xeon Phis each:

salloc -N2 --gres=mic:2

/etc/slurm/init_mic.sh

mpirun -np 4 mic_prog

bullxmpi-mic selects automatically Xeon Phi nodes of a job for a Xeon Phi executable, and
Xeon nodes for a x86_64 executable. You can launch hybrid jobs after compiling a
program into two executables (one for Xeon and one for Xeon Phi) and launching both
mpirun using the ':' character as a separator between the commands.

30 bullx MPI User's Guide

Examples

Note We assume in these examples that mic_prog is on a NFS mount, so the step 3 (copy
mic_prog to the Xeon Phis) is useless.

For example, on a cluster with two Xeon Phi per nodes, the following commands are
equivalent:

salloc -N2 --gres=mic:2

/etc/slurm/init_mic.sh

mpirun -np 16 -bynode xeon_prog : -np 60 -bynode mic_prog

and:

salloc -N2 --gres=mic:2 -w node1,node2

/etc/slurm/init_mic.sh

mpirun -np 16 -bynode -H node1,node2 xeon_prog : -np 60 -bynode -H node1-

mic0,node1-mic1,node2-mic0,node2-mic1 mic_prog

Both launch 16 ranks on 2 Xeons and 60 on their 4 Xeon Phi (here -bynode picks nodes in
a round robin fashion). Nodes are chosen manually in the last command, whereas in the
first one mpirun guesses nodes to pick: Xeons nodes allocated by SLURM for the Xeon
executable and corresponding Xeons Phis nodes for the Xeon Phi executable.

Note Xeon Phi processors have 4 hyperthreads per core (see section 2.7.8 bullx MPI
Hyperthreading Support. In bullxmpi-mic, binding with "--cpu-per-rank" will use logical
cpus, so in a hybrid application you will have to use the option --cpu-per-rank $((4*N)) to
bind to N physical cpus.

2.8.3.3 Xeon Phi co-processor Mode

Note For the co-processor mode, the application must be compiled for the host (not for the Xeon
Phi). The application runs on the host and offload some part of the computation to the Xeon
Phi. This mode is close to the GPU mode.

In this mode, Xeon Phis are used as coprocessors to a node, which means that the MPI
runtime is not aware of them: the Xeon binary offloads the MIC code. Therefore the normal
flavor of Bullxmpi has to be used, not Bullxmpi-mic. To use Xeon Phi in this mode it is
advisable to:

1. Set the environment:

source /opt/intel/composerxe/bin/compilervars.sh

module load bullxmpi/bullxmpi-1.2.6.1

2. Compile your app containing OpenCL or offload pragmas normally.
(See /opt/intel/${composerxe}/Samples/en_US/[C++ | Fortran]/mic_samples/ for
examples):

mpicc offload_prog.c -o offload_prog

 Chapter 2. Using bullx MPI Parallel Library 31

3. Reserve the Xeon Phi with --gres and initialize them:

salloc -N1 --gres=mic:2

/etc/slurm/init_mic.sh

Note If the Xeon Phis are intended to be used only in offload mode for each node in the cluster,
the system administrator can disable the PROLOG/EPILOG scripts (to remove the time
needed to reboot the Xeon Phis). See section 2.9.4 Managing security of the Xeon Phis in
the bullx BM User's Guide, for more details about the impacts of disabling
PROLOG/EPILOG.

4. Launch your job with srun or mpirun:

mpirun -N 2 offload_prog

There are two executions issues with the Xeon Phi co-processor.

 The first issue is the affinity problem, which is basically the same than for GPU
hardware. LEO provides ways to set up the correct GPU for a particular MPI task.

 The second issue is the thread affinity on the MIC. With the Intel OpenMP software
stack, it is possible to control the number of threads created by each MPI task on the
MIC (with the MIC_OMP_NUM_THREADS environment variable), or to control thread
affinity (MIC_KMP_AFFINITY). These variables are defined in the Intel Compilers
documentation.

The user can specify thread affinity for each MPI process launched through
environment variables. See Intel Documentation for Xeon Phi for more details.

Usage example

mpirun -x MIC_PREFIX=MIC -x MIC_OMP_NUM_THREADS=48 -x

MIC_KMP_AFFINITY=exeplicit,proclist=[4-51],verbose ./mpi_omp_mic_test

When launching several executables with one mpirun command, it can be useful to control
where OpenMP threads will be bound.
See the standard documentation provided with the Intel compilers for more details about
the runtime OpenMP provided by the Intel compilers (especially the KMP_AFFINITY syntax).

32 bullx MPI User's Guide

 Bull Cedoc

357 avenue Patton

BP 20845

49008 Angers Cedex 01

FRANCE

	bullx scs 4 R4 - bullx MPI User's Guide
	Table of Contents
	Preface
	Intended Readers
	Highlighting
	Related Publications

	Chapter 1. Introduction to bullx MPI Development Environment
	1.1 The Program Execution Environment
	1.1.1 Parallel Processing and MPI libraries
	1.1.2 Resource Management
	1.1.3 Batch Management
	1.1.4 Linux Tools
	1.1.5 Modules

	1.2 Data and Files

	Chapter 2. Using bullx MPI Parallel Library
	2.1 Overview
	2.1.1 OpenMPI Version
	2.1.2 Quick Start for bullx MPI

	2.2 Compiling with bullx MPI
	2.3 Running with bullx MPI
	2.4 Binding with bullx MPI
	2.4.1 Binding a Full MPI Application
	2.4.2 Binding Hybrid Applications

	2.5 Configuring and Tuning bullx MPI
	2.5.1 Obtaining Details of the MPI Configuration
	2.5.2 Setting the MCA Parameters
	2.5.3 Parameters Profiles
	2.5.4 Protecting MCA System-wide Parameters

	2.6 MPI/IO with bullx MPI
	2.6.1 MPI/IO and NFS File Systems
	2.6.2 MPI/IO on Lustre

	2.7 Extra Functionalities
	2.7.1 Device Failover
	2.7.2 Deadlock Detection
	2.7.3 GHC Component
	2.7.4 WDC Framework
	2.7.5 KNEM Module
	2.7.6 Carto: Managing Multi InfiniBand HCA Systems
	2.7.7 Mellanox FCA
	2.7.8 bullx MPI Hyperthreading Support
	2.7.9 bullx MPI GNU Compilers Support

	2.8 Using Accelerators in MPI Programs
	2.8.1 NVIDIA GPUs
	2.8.2 Xeon Phi (MIC)
	2.8.3 bullx MPI and Accelerators
	2.8.3.1 GPU
	2.8.3.2 Xeon Phi Native mode
	2.8.3.3 Xeon Phi co-processor Mode

