
 

 

bullx scs 4 R4 

ex
tre

m
e 

co
m

pu
tin

g 

bullx DE User's Guide 

 

 
REFERENCE 
86 A2 84FK 02  



 

 

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not limited 
to, copying, distributing, modifying, and making derivative works. 
 

Copyright © Bull SAS 2014 

Printed in France 

 

Trademarks and Acknowledgements 

We acknowledge the rights of the proprietors of the trademarks mentioned in this manual. 

All brand names and software and hardware product names are subject to trademark and/or patent protection. 

Quoting of brand and product names is for information purposes only and does not represent trademark misuse. 

Software 

 
January 2014 
 
Bull Cedoc 
357 avenue Patton 
BP 20845 
49008 Angers Cedex 01 
FRANCE 
 

 
The information in this document is subject to change without notice. Bull will not be liable for errors 
contained herein, or for incidental or consequential damages in connection with the use of this material. 

 



 

 Preface i 

Table of Contents 
 

Preface .......................................................................................................................................................... v 

Intended Readers ................................................................................................................... v 

Highlighting .......................................................................................................................... v 

Related Publications .............................................................................................................. vi 

Chapter 1. bullx Development Environment ........................................................................................1 

Chapter 2. bullx DE User Environment ................................................................................................3 

2.1 bullx DE Installation Path .......................................................................................... 3 

2.2 Environment Modules .............................................................................................. 3 

2.3 Using Modules ....................................................................................................... 4 

2.4 bullx DE Module Files .............................................................................................. 5 

Chapter 3. Debugging Application with padb ....................................................................................7 

3.1 Installation ............................................................................................................. 7 

3.2 Features ................................................................................................................. 7 

3.3 padb with SLURM / bullx MPI ................................................................................... 7 

3.4 Using padb ............................................................................................................ 8 

3.5 More Information .................................................................................................. 12 

Chapter 4. Application Analysis with bullxprof .................................................................................13 

4.1 Environment ......................................................................................................... 13 

4.2 Usage ................................................................................................................. 13 

4.3 Command Line Options ......................................................................................... 14 

4.4 Configuration ....................................................................................................... 15 

4.5 Profiling reports .................................................................................................... 19 
4.5.1 Timing experiment ................................................................................... 19 
4.5.2 HWC experiment .................................................................................... 20 
4.5.3 MPI experiment ....................................................................................... 20 
4.5.4 IO experiment ......................................................................................... 21 
4.5.5 MPI/IO experiment .................................................................................. 23 

Chapter 5. MPI Application Profiling ................................................................................................25 

5.1 MPI Analyser ........................................................................................................ 25 
5.1.1 MPI Analyser Overview ............................................................................ 25 
5.1.2 Communication Matrices .......................................................................... 26 
5.1.3 Topology of the Execution Environment ....................................................... 26 



 

ii bullx DE User's Guide 

5.1.4 Using profilecomm ................................................................................... 27 
5.1.5 profilecomm Data Analysis ....................................................................... 28 
5.1.6 Profilecomm Data Display Options ............................................................. 33 
5.1.7 Exporting a Matrix or an Histogram ........................................................... 35 

5.2 Scalasca .............................................................................................................. 39 
5.2.1 Scalasca Overview .................................................................................. 39 
5.2.2 Scalasca Usage ...................................................................................... 40 
5.2.3 More Information .................................................................................... 40 

5.3 xPMPI .................................................................................................................. 41 
5.3.1 Supported tools ....................................................................................... 41 
5.3.2 xPMPI Configuration ................................................................................ 42 
5.3.3 xPMPI Usage .......................................................................................... 42 

Chapter 6. Analyzing Application Performance ................................................................................43 

6.1 PAPI .................................................................................................................... 43 
6.1.1 High-level PAPI Interface ........................................................................... 43 
6.1.2 Low-level PAPI Interface ............................................................................ 45 
6.1.3 Collecting FLOP Counts on Sandy Bridge Processors .................................... 46 

6.2 Bull Performance Monitor (bpmon) ........................................................................... 48 
6.2.1 bpmon Reporting Mode ........................................................................... 49 
6.2.2 BPMON PAPI CPU Performance Events ....................................................... 50 
6.2.3 BPMON with the Bull Coherent Switch ....................................................... 51 

6.3 Open|SpeedShop ................................................................................................ 53 
6.3.1 Open|SpeedShop Overview .................................................................... 53 
6.3.2 Open|SpeedShop Usage ......................................................................... 53 
6.3.3 More Information .................................................................................... 54 

6.4 HPCToolkit ........................................................................................................... 55 
6.4.1 HPCToolkit Workflow ............................................................................... 55 
6.4.2 HPCToolkit Tools ..................................................................................... 56 
6.4.3 More information about HPCToolkit ........................................................... 58 

6.5 Bull-Enhanced HPCToolkit ....................................................................................... 59 
6.5.1 History Component .................................................................................. 59 
6.5.2 Viewing Component ................................................................................ 61 
6.5.3 HPCToolkit Wrappers .............................................................................. 63 
6.5.4 Test Case ............................................................................................... 67 
6.5.5 HPCToolkit Configuration Files .................................................................. 69 

Chapter 7. I/O Profiling ..................................................................................................................71 

7.1 Iotop ................................................................................................................... 71 

7.2 Darshan .............................................................................................................. 72 
7.2.1 Darshan Usage ....................................................................................... 72 



 

 Preface iii 

7.2.2 Darshan log files ..................................................................................... 73 
7.2.3 Compiling with Darshan ........................................................................... 73 
7.2.4 Analyzing log files with Darshan utilities ..................................................... 74 
7.2.5 Darshan Limitations.................................................................................. 74 

Chapter 8. Libraries and Other Tools ...............................................................................................75 

8.1 Boost ................................................................................................................... 75 

8.2 OTF (Open Trace Format) ...................................................................................... 76 

8.3 Ptools .................................................................................................................. 77 
8.3.1 CPUSETs ................................................................................................ 77 
8.3.2 CPUSETs management tools ...................................................................... 78 

Appendix A. Performance Monitoring with BCS Counters ....................................................................79 

A.1 Bull Coherent Switch Architecture ............................................................................ 79 

A.2 Performance Monitoring Architecture ....................................................................... 80 
Event Detection ..................................................................................................... 80 
Event Counting ..................................................................................................... 80 

A.3 Event Types .......................................................................................................... 81 
PE Event Types ...................................................................................................... 81 
NCMH Event Types ............................................................................................... 85 
LL and OB Event Types ........................................................................................... 86 
RO Event Type ...................................................................................................... 86 

A.4 Event Counts and Counter Threshold Comparisons..................................................... 87 

A.5 Software Application Supported BCS Monitoring Events ............................................. 89 
PE Event Setup ...................................................................................................... 91 
NCMH Event Setup ............................................................................................. 100 
LL Event Setup ..................................................................................................... 103 
RO Event Setup ................................................................................................... 105 

A.6 BCS Key Architectural Values ............................................................................... 106 
Message Class and Opcode Mapping ................................................................... 106 
QPI and XQPI NodeID Maps ................................................................................ 109 

A.7 Configuration Management Description ................................................................. 111 
Performance Monitor Configuration Registers .......................................................... 111 
Event Configuration Registers ................................................................................ 112 

A.8 BCS BPMON Usage Examples.............................................................................. 114 
Total Memory Traffic For All BCSs Using Incoming Traffic ......................................... 114 
Total Memory Traffic for All BCSs Using Outgoing Traffic ......................................... 115 
Memory Traffic For a Source and a Destination BCS Using Incoming Traffic ................ 115 

 

 



 

iv bullx DE User's Guide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Preface v 

Preface 
This guide describes the tools and libraries provided with bullx DE (Development 
Environment) that allow the development, testing and optimal use of application programs 
on Bull extreme computing clusters. In addition, various Open Source and proprietary tools 
are described. 

Note  You are advised to consult the Bull Support Web site for the most up-to-date product 
information, documentation, firmware updates, software fixes and service offers:  
http://support.bull.com 

Intended Readers 
This guide is intended for Application Developers of bullx supercomputer suite clusters. 

Highlighting 
The following highlighting conventions are used in this guide: 

Bold Identifies the following: 
• Interface objects such as menu names, labels, buttons and icons. 
• File, directory and path names. 
• Keywords to which particular attention must be paid. 

Italic Identifies references such as manuals or URLs. 

monospace Identifies portions of program codes, command lines, or messages 
displayed in command windows. 

<         > Identifies parameters to be supplied by the user. 

Commands entered by the user 

System messages displayed on the screen 

 WARNING  
A Warning notice indicates an action that could cause damage to a program, device, 
system, or data.  

http://support.bull.com/


 

vi bullx DE User's Guide 

Related Publications 
  

 
mportant The Software Release Bulletin (SRB) delivered with your version of bullx 

supercomputer suite must be read first. 

• Software Release Bulletin, 86 A2 91FK 

• Documentation Overview, 86 A2 90FK 

• Installation and Configuration Guide, 86 A2 74FK 

• Extreme Pack - Installation and Configuration Guide, 86 A2 75FK 

• bullx MC Administration Guide, 86 A2 76FK 

• bullx MC Monitoring Guide, 86 A2 77FK 

• bullx MC Power Management Guide, 86 A2 78FK 

• bullx MC Storage Guide, 86 A2 79FK 

• bullx MC InfiniBand Guide, 86 A2 80FK 

• bullx MC Ethernet Guide, 86 A2 82FK 

• bullx MC Security Guide, 86 A2 81FK 

• bullx EP Administration Guide, 86 A2 88FK 

• bullx PFS Administration Guide, 86 A2 86FK 

• bullx MPI User's Guide, 86 A2 83FK 

• bullx DE User’s Guide, 86 A2 84FK 

• bullx BM User's Guide, 86 A2 85FK  

• bullx MM Argos User's Guide, 86 A2 87FK 

• Extended Offer Administration Guide, 86 A2 89FK 

• bullx scs 4 R4 Documentation Portfolio, 86 AP 23PA 

• bullx scs 4 R4 Documentation Set, 86 AP 33PA 

This list is not exhaustive. Useful documentation is supplied on the Resource & 
Documentation CD(s) delivered with your system. You are strongly advised to refer carefully 
to this documentation before proceeding to configure, use, maintain, or update your 
system. 

 

 

 

 

 

 



 

 Chapter 1. bullx Development Environment 1 

Chapter 1. bullx Development Environment 
The Bull Extreme Computing offer development environment relies on three sets of tools: 

• Linux OS development tools 
These tools come as part of the Linux distribution. They typically include GNU 
compilers, gdb debugger as well as profiling tools such as gproof, oprofile and 
valgrind. 
See the Linux OS documentation for more information on these tools. 

• bullx scs 4 Extended Offer tools 
These tools are third party products, which are selected, validated in bullx 
supercomputing suite environment, distributed and fully supported by Bull. They include 
Intel compilers and profiler tools, DDT from Alinea, TotalView from RogueWave 
parallel debuggers, as well as Vampire. 
See the bullx Extended Offer Administration Guide for details regarding the installation 
and configuration of these third-party products for the development environment, as 
part of the extended offer. 

• bullx DE (Development Environment) 
bullx DE is a component of bullx supercomputer suite. It includes a collection of Open 
Source tools that help users to develop, execute, debug, analyze and profile HPC 
parallel applications.  

This guide describes the use of the tools and libraries provided with bullx DE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 bullx DE User's Guide 

 

 

 

 

 

 

 

 

 



 

 Chapter 2. bullx DE User Environment 3 

Chapter 2. bullx DE User Environment 

2.1 bullx DE Installation Path 
The tools and libraries for the bullx Development Environment are installed under 
/opt/bullxde. This directory contains the following sub-directories: 

debuggers  Contains bullx DE core offer tools for debugging applications. 

mpicompanions  Contains tools and libraries used alongside bullx MPI. 

perftools  Contains basic tools to help tune application performance or to read 
performance counters for a running application. 

profilers  Contains application profilers. 

utils  Contains utilities used by other tools. 

modulefiles Contains bullx DE tools module files. 

2.2 Environment Modules 
bullx DE uses Environment Modules to customize dynamically your shell environment in 
order to use a tool or a set of tools. For instance, an environment can consist of a set of 
compatible products including a defined release of a FORTRAN compiler, a C compiler, a 
debugger and mathematical libraries. In this way, you can easily reproduce trial 
conditions, or use only proven environments.  

The Environment Modules package relies on modulefiles to allow dynamic modification of 
a user's environment. Each module file contains the information needed to configure the 
shell for an application. Once the Modules package is initialized, the environment can be 
modified on a per-module basis using the module command, which interprets module files. 
Typically, module files instruct the module command to alter or set shell environment 
variables such as PATH, MANPATH, etc. module files may be shared by many users on a 
system and users may have their own collection to supplement or replace the shared 
module files. 

Modules can be loaded and unloaded dynamically and atomically, in a clean fashion. All 
popular shells are supported, including bash, ksh, zsh, sh, csh, tcsh, as well as some 
scripting languages such as Perl. 

Modules are useful in managing different versions of applications. Modules can also be 
bundled into metamodules that will load an entire suite of different applications. 



 

4 bullx DE User's Guide 

2.3 Using Modules 
The following command gives the list of available modules on a cluster. 

module avail 

------------------------ /opt/modules/version ------------------------ 
3.1.6 
 
------------------- /opt/modules/3.1.6/modulefiles ------------------- 
dot         module-info null 
module-cvs  modules     use.own 
 
---------------------- /opt/modules/modulefiles ---------------------- 
oscar-modules/1.0.3 (default) 

Modules available for the user are listed under the line /opt/modules/modulefiles. 

The command to load a module is: 

module load module_name 

The command to verify the loaded modules list is: 

module list 

Using the avail command, it is possible that some modules will be marked (default): 

module avail 

These modules are those that have been loaded without the user specifying a module 
version number. For example, the following commands are the same: 

module load configuration 
module load configuration/2 

The module unload command unloads a module.  

The module purge command clears all the modules from the environment.  

module purge 

It is not possible to load modules that include different versions of intel_cc or intel_fc at the 
same time because they cause conflicts. 



 

 Chapter 2. bullx DE User Environment 5 

2.4 bullx DE Module Files 
bullx Development Environment provides module files for all the embedded tools that help 
to configure the user's environment (see Sections 2.2 and 2.3). 

The following command loads the bullx DE main module: 

$ module load bullxde 

Loading this module will make available the tools module; these can be listed by using the 
module avail command, as shown in the example below: 

Example 

$ module avail 

Output 

--------------- /opt/bullxde/modulefiles/debuggers -------------- 
padb/3.2  
 
-------------- /opt/bullxde/modulefiles/utils -------------------  
OTF/1.8  
 
-------------- /opt/bullxde/modulefiles/profilers ---------------  
hpctoolkit/4.9.9_3111_Bull.2  
 
-------------- /opt/bullxde/modulefiles/perftools ---------------  
bpmon/1.0_Bull.1.20101208 papi/4.1.1_Bull.2 ptools/0.10.4_Bull.4.20101203  
 
------------ /opt/bullxde/modulefiles/mpicompanions -------------  
boost-mpi/1.44.0 mpianalyser/1.1.4 scalasca/1.3.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 bullx DE User's Guide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Chapter 3. Debugging Application with padb 7 

Chapter 3. Debugging Application with padb 
The padb tool is used to trace MPI process stacks for running job. It is a Job Inspection tool 
used to examine and debug parallel programs, simplifying the process of gathering stack 
traces for compute clusters. padb supports a number of parallel environments and it works 
out-of-the-box for most clusters.  

It is an Open Source (licensed under the Lesser General Public License) 
http://www.gnu.org/licenses/lgpl.html, non-interactive, command line, scriptable tool 
intended for use by programmers and System Administrators alike. 

It supports the RMS, SLURM, and LSF batch schedulers. Bull has contributed in the project to 
support more resources managers such as PBS Pro-MPD, SLURM-OpenMPI, LSF-MPD and 
LSF-OpenMPI. 

However, it will not diagnose problems with the wider environment, including the job 
launcher or runtime environment. 

3.1 Installation 
padb should be installed on LOGIN and COMPUTE nodes type. The following tools are 
pre-required: openSSH, pdsh, Perl, and gdb. 

3.2 Features 
The stack trace generation operation mode is supported.  

3.3 padb with SLURM / bullx MPI 
Bull has developed specific features to support the combination of SLURM and OpenMPI 
environments. Specifically, OpenMPI applications (compiled with OpenMPI libraries) 
should be launched using the mpirun command (OpenMPI launch command) within a 
resource managed by SLURM using the salloc command. 

Some examples of job launching command combinations are shown below: 

Example 1 

salloc -w host1,host2 mpirun -n 16 ompi_appli 

Example 2 

salloc -w host1,host2 

salloc: Granted job allocation XXXX 

$ mpirun -n 16 ompi_appli 

http://www.gnu.org/licenses/lgpl.html


 

8 bullx DE User's Guide 

Example 3 

$ salloc -w host1,host2 

salloc: Granted job allocation XXXX 

$ srun -n 1 mpirun -n 16 ompi_appli 

Example 4 

$ salloc -IN 3 

salloc: Granted job allocation XXXX 

$ srun -n 1 mpirun -n 16 ompi_appli 

3.4 Using padb  

Synopsis 

padb -O rmgr=slurm -x[t] –a | jobid 

-x    Get processes stacks 

-t    Use tree based output for stack traces. 

-a   All jobs for this user 

jobid   Job Id obtained by the slurm squeue command 

An environment variable can be set for the Resource Manager, for example export 
PADB_RMGR=slurm, then the padb command synopsis becomes simpler, as shown: 

padb -x[t] –a | jobid 

Examples 

A short example is shown below: 

$ salloc -p Zeus -IN 3 

salloc: Granted job allocation 47136 

$ mpirun -n 9 pp_sndrcv_spbl 
$ squeue 

JOBID  PARTITION  NAME USER   ST  TIME   NODES  NODELIST(REASON) 
47136  Zeus    bash senglont R  24:47  3    inti[41-43] 

$ ./padb -O rmgr=slurm -x 47136 

0:ThreadId: 1 
0:main() at pp_sndrcv_spbl.c:52 
0:PMPI_Finalize() at ?:? 
0:ompi_mpi_finalize() at ?:? 



 

 Chapter 3. Debugging Application with padb 9 

0:barrier() at ?:? 
0:opal_progress() at ?:? 
0:opal_event_loop() at ?:? 
0:poll_dispatch() at ?:? 
0:poll() at ?:? 
0:ThreadId: 2 
0:clone() at ?:? 
0:start_thread() at ?:? 
0:btl_openib_async_thread() at ?:? 
0:poll() at ?:? 
0:ThreadId: 3 
0:clone() at ?:? 
0:start_thread() at ?:? 
0:service_thread_start() at ?:? 
0:select() at ?:? 
1:ThreadId: 1 
1:main() at pp_sndrcv_spbl.c:52 
1:PMPI_Finalize() at ?:? 
1:ompi_mpi_finalize() at ?:? 
1:barrier() at ?:? 
1:opal_progress() at ?:? 
1:opal_event_loop() at ?:? 
1:poll_dispatch() at ?:? 
1:poll() at ?:? 
1:ThreadId: 2 
1:clone() at ?:? 
1:start_thread() at ?:? 
1:btl_openib_async_thread() at ?:? 
1:poll() at ?:? 
1:ThreadId: 3 
1:clone() at ?:? 
1:start_thread() at ?:? 
1:service_thread_start() at ?:? 
1:select() at ?:? 
2:ThreadId: 1 
2:main() at pp_sndrcv_spbl.c:47 
2:PMPI_Recv() at ?:? 
2:mca_pml_ob1_recv() at ?:? 
2:opal_progress() at ?:? 
2:btl_openib_component_progress() at ?:? 
2:??() at ?:? 
2:ThreadId: 2 
2:clone() at ?:? 
2:start_thread() at ?:? 
2:btl_openib_async_thread() at ?:? 
2:poll() at ?:? 
2:ThreadId: 3 
2:clone() at ?:? 
2:start_thread() at ?:? 
2:service_thread_start() at ?:? 
2:select() at ?:? 
3:ThreadId: 1 
3:main() at pp_sndrcv_spbl.c:52 
3:PMPI_Finalize() at ?:? 
3:ompi_mpi_finalize() at ?:? 
3:barrier() at ?:? 
3:opal_progress() at ?:? 
3:opal_event_loop() at ?:? 
3:poll_dispatch() at ?:? 
3:poll() at ?:? 
3:ThreadId: 2 
3:clone() at ?:? 
3:start_thread() at ?:? 
3:btl_openib_async_thread() at ?:? 
3:poll() at ?:? 
3:ThreadId: 3 
3:clone() at ?:? 
3:start_thread() at ?:? 
3:service_thread_start() at ?:? 
3:select() at ?:? 
4:ThreadId: 1 
4:main() at pp_sndrcv_spbl.c:52 
4:PMPI_Finalize() at ?:? 
4:ompi_mpi_finalize() at ?:? 
4:barrier() at ?:? 
4:opal_progress() at ?:? 



 

10 bullx DE User's Guide 

4:opal_event_loop() at ?:? 
4:poll_dispatch() at ?:? 
4:poll() at ?:? 
4:ThreadId: 2 
4:clone() at ?:? 
4:start_thread() at ?:? 
4:btl_openib_async_thread() at ?:? 
4:poll() at ?:? 
4:ThreadId: 3 
4:clone() at ?:? 
4:start_thread() at ?:? 
4:service_thread_start() at ?:? 
4:select() at ?:? 
5:ThreadId: 1 
5:main() at pp_sndrcv_spbl.c:52 
5:PMPI_Finalize() at ?:? 
5:ompi_mpi_finalize() at ?:? 
5:barrier() at ?:? 
5:opal_progress() at ?:? 
5:opal_event_loop() at ?:? 
5:poll_dispatch() at ?:? 
5:poll() at ?:? 
5:ThreadId: 2 
5:clone() at ?:? 
5:start_thread() at ?:? 
5:btl_openib_async_thread() at ?:? 
5:poll() at ?:? 
5:ThreadId: 3 
5:clone() at ?:? 
5:start_thread() at ?:? 
5:service_thread_start() at ?:? 
5:select() at ?:? 
6:ThreadId: 1 
6:main() at pp_sndrcv_spbl.c:52 
6:PMPI_Finalize() at ?:? 
6:ompi_mpi_finalize() at ?:? 
6:barrier() at ?:? 
6:opal_progress() at ?:? 
6:opal_event_loop() at ?:? 
6:poll_dispatch() at ?:? 
6:poll() at ?:? 
6:ThreadId: 2 
6:clone() at ?:? 
6:start_thread() at ?:? 
6:btl_openib_async_thread() at ?:? 
6:poll() at ?:? 
6:ThreadId: 3 
6:clone() at ?:? 
6:start_thread() at ?:? 
6:service_thread_start() at ?:? 
6:select() at ?:? 
7:ThreadId: 1 
7:main() at pp_sndrcv_spbl.c:52 
7:PMPI_Finalize() at ?:? 
7:ompi_mpi_finalize() at ?:? 
7:barrier() at ?:? 
7:opal_progress() at ?:? 
7:opal_event_loop() at ?:? 
7:poll_dispatch() at ?:? 
7:poll() at ?:? 
7:ThreadId: 2 
7:clone() at ?:? 
7:start_thread() at ?:? 
7:btl_openib_async_thread() at ?:? 
7:poll() at ?:? 
7:ThreadId: 3 
7:clone() at ?:? 
7:start_thread() at ?:? 
7:service_thread_start() at ?:? 
7:select() at ?:? 
8:ThreadId: 1 
8:main() at pp_sndrcv_spbl.c:52 
8:PMPI_Finalize() at ?:? 
8:ompi_mpi_finalize() at ?:? 
8:barrier() at ?:? 
8:opal_progress() at ?:? 



 

 Chapter 3. Debugging Application with padb 11 

8:opal_event_loop() at ?:? 
8:poll_dispatch() at ?:? 
8:poll() at ?:? 
8:ThreadId: 2 
8:clone() at ?:? 
8:start_thread() at ?:? 
8:btl_openib_async_thread() at ?:? 
8:poll() at ?:? 
8:ThreadId: 3 
8:clone() at ?:? 
8:start_thread() at ?:? 
8:service_thread_start() at ?:? 
8:select() at ?:? 

The following example shows padb with the stack tree option: 

%./padb -O rmgr=slurm -tx 47136 

 [0-1,3-8] (8 processes) 
 
main() at pp_sndrcv_spbl.c:52  
 PMPI_Finalize() at ?:? 
  ompi_mpi_finalize() at ?:? 
   barrier() at ?:? 
    opal_progress() at ?:? 
     opal_event_loop() at ?:? 
      poll_dispatch() at ?:? 
       poll() at ?:? 
        ThreadId: 2 
         clone() at ?:? 
          start_thread() at ?:? 
           btl_openib_async_thread() at ?:? 
            poll() at ?:? 
             ThreadId: 3 
              clone() at ?:? 
               start_thread() at ?:? 
                service_thread_start() at ?:? 
                 select() at ?:? 
2 (1 processes) 
 
ThreadId: 1 
 ??() at ?:? 
  ??() at ?:? 
   ThreadId: 2 
    clone() at ?:? 
     start_thread() at ?:? 
      btl_openib_async_thread() at ?:? 
       poll() at ?:? 
        ThreadId: 3 
         clone() at ?:? 
          start_thread() at ?:? 
           service_thread_start() at ?:? 
            select() at ?:? 
$  

These stacks are standard from GDB. 



 

12 bullx DE User's Guide 

3.5 More Information 

See  http://padb.pittman.org.uk and the man page for more information about padb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://padb.pittman.org.uk/


 

 Chapter 4. Application Analysis with bullxprof 13 

Chapter 4. Application Analysis with bullxprof 
bullxprof is a lightweight profiling tool, which launches and profiles a specified program 
according to the chosen experiments and dumps a profiling report onto the standard error 
output stream after the program’s completion. 

bullxprof can be seen as pertinent to the first analysis of an application as it delivers 
information that help targeting the program's potential ‘hotspots’. 

4.1 Environment 
It is highly recommended to use the module file provided to have the environment set 
correctly before using the tools (see Section 2.4 bullx DE Module Files). 

1. Load the bullxprof module file: 

module load bullxprof/<version> 

2. Load the MPI (bullx MPI/OpenMPI or Intel MPI) environment when profiling an MPI 
parallel program. The PAPI environment, needed for hwc profiling, is automatically 
loaded by the bullxprof module file. 

When profiling Intel compiled application, the Intel environment must be loaded before the 
MPI environment. 

4.2 Usage 
The bullxprof command line is launched as follows: 

bullxprof [ <bullxprof-options> ] "program [ <prog-args> ]" 

In a parallel context, you can use bullxprof along with mpirun or srun as follows: 

mpirun 

bullxprof <bullxprof args> "mpirun <mpirun args> program <program args>" 

srun 

bullxprof <bullxprof args> "srun <srun args> program <program args>" 



 

14 bullx DE User's Guide 

4.3 Command Line Options 
bullxprof can be configured at run time with the following command line switches: 
-d, --debug <debuglevel>  Sets the tool’s verbosity level: 0 (off), 1 (low), 2 (medium) and 3 

(high).  

-e, --experiments <exp1,exp2,...,expN>   
Determines which profiling experiments will be run. Possible 
experiments are:  

  timing: application time profiling  

  hwc: hardware metrics profiling  

  mpi: MPI functions profiling  

  io: POSIX I/O functions profiling  

  mpiio: MPI I/O functions profiling  

--force  Forces the application profiling when multithreading is detected. This 
version of bullxprof does not support multithreading. By default, 
bullxprof will stop running when multithreading (OpenMP, pthread) is 
detected within the profiled binary. 

-h, --help  Displays the help message 

-l, --list Prints the list of functions that can be instrumented  

-L, --libs <lib1.so,...,libN.so>   
List of shared libraries to include in the application profiling. bullxprof 
does not profile share libraries by default. The library full path name is 
needed if the library path name is not in the LD_LIBRARY_PATH 
environment variable.  

-m, --metrics <metric1,...,metricN>  Enables profiling of the selected metrics. Applies to the 
hwc experiment only. Possible metric values are:  

  flops: consumed GFLOPS  

  ibc: Instructions by Cycles  

  cmr: Cache Miss Rate (in %)  

  clr: Cache Line Reuse   

-o, --output <mode1,...,modeN>   
Determines report production output mode.  
Possible output modes are stdout, file and csv.  

  “stdout” causes reports to be dumped on standard error stream.  

  “file” causes reports to be created as files in a directory named 
bullxprof.YYYYMMDD-HHMM-$SLURM_JOB_ID.  

  “csv” causes reports to be created as CSV files in a directory named 
bullxprof.YYYYMMDD-HHMM-$SLURM_JOB_ID.  

-R, --region <region1,...,regionN>  Enables time profiling of the selected code region. 
Applies to the timing experiment only. Possible regions are:  

  user: user code  

  mpi: MPI functions  

  io: POSIX I/O functions  

  mpiio: MPI I/O functions  



 

 Chapter 4. Application Analysis with bullxprof 15 

-s Prints the reports using a smart display (time as 
[hours:]minutes:seconds, other values as K(ilo),M(ega) or G(iga)).  

-t, --trace <tracelevel>  Sets the level of detail of the profiling reports: 1 (basic), 2 (detailed) 
and 3 (advanced). Overrides experiment specific trace level set in 
configuration files.  

-v  Displays version and exits 

4.4 Configuration 
bullxprof behavior can be configured through command line options or via a configuration 
file. The options given as command line arguments overload the options set in a 
configuration file. 

The configuration files are considered in this order of priority: 

• A configuration file specified by the BULLXPROF_CONF_FILE environment variable. 

• A file named bullxprof.conf located in the directory where the tool is launched from. 

• A file named bullxprof.conf located in $HOME/.bullxprof  

• A system-wide configuration file named bullxprof.conf located in 
$BULLXPROF_HOME/etc. 

• A system-wide core configuration file named bullxprof.core.conf located in 
$BULLXPROF_HOME/etc. It is highly recommended not to modify the content of this 
file unless the administrator is well aware of his changes. 

The following parameters may be set in a user-level configuration file: 

General Configuration File Options  

- app.functions.excluded=<string1,...,stringN>   
Application functions to exclude from profiling.  
Example: app.functions.excluded=functionA,_func_  
Every function having one of the option’s entry in its name will be 
ignored.  
Caution: must not be left blank when enabled  

- app.functions.whitelist=<string1,...,stringN>   
Exception in the excluded application functions list. Example: 
app.functions.whitelist=one_func_opt  
A function whose name is given as an entry of this option will not be 
ignored if it matches the app.functions.excluded option.  
Caution: must not be left blank when enabled  

- app.modules.excluded=<string1,...,stringN>   
Application source file to exclude from profiling.  
Example: app.modules.excluded=file1.c,file2.,.cpp  
Every source file having one of the option’s entry in its name will be 
ignored.  
Caution: must not be left blank when enabled  



 

16 bullx DE User's Guide 

- app.modules.whitelist=<string1,...,stringN>   
Exception in the excluded application source file list.  
Example: app.modules.whitelist=file2.cpp  
A source file whose name is given as an entry of this option will not be 
ignored if it matches the app.functions.excluded option.  
Caution: must not be left blank when enabled  

- app.libraries=<string1,...,stringN>   
Comma-separated list of shared libraries to include in the application 
profiling. The library full path name is needed if the library path name 
is not in the LD_LIBRARY_PATH environment variable.  
Example: app.libraries=libfoo.so,/path/to/libbar.so  
Caution: must not be left blank when enabled 

- bullxprof.debug=<number>   
Sets the tool’s verbosity level: 0 (off), 1 (low), 2 (medium) and 3 (high).  

- bullxprof.experiments=<exp1,...,expN>   
Determines which profiling experiments are to be activated.  
Possible experiments are: timing, hwc, mpi, io and mpiio 

- bullxprof.smartdisplay=<[0|1]>  
Prints the reports using a smart display (time as 
[hours:]minutes:seconds, other values as K(ilo),M(ega) or G(iga)) when 
value is 1. Disabled otherwise.  

- bullxprof.output=<mode1,...,modeN>   
Determines report production output mode. Possible output modes are 
stdout, file and csv.  

  stdout causes reports to be dumped on standard error stream.  

  file causes reports to be created as files in a directory named 
bullxprof.YYYYMMDD-HHMM-$SLURM_JOB_ID.  

  csv causes reports to be created as CSV files in a directory named 
bullxprof.YYYYMMDD-HHMM-$SLURM_JOB_ID. 

timing experiment Configuration File Options  

- bullxprof.timing.tracelevel=<number>  timing  
Experiment reports specific level of detail: 1 (basic), 2 (detailed) and 3 
(advanced).  

- bullxprof.timing.user.threshold=<float>   
Enables the display of user function statistics when percentage of user 
region time is over the given value. Set to 0 to disable this feature . 

- bullxprof.timing.region=<region1,...,regionN>   
Enables time profiling of the selected code region. Possible regions are:  

  user: user code  

  mpi: MPI functions  

  io: POSIX I/O functions  

  mpiio: MPI I/O functions  



 

 Chapter 4. Application Analysis with bullxprof 17 

hwc experiment Configuration File Options  

- bullxprof.hwc.tracelevel=<number>   
hwc experiment reports specific level of detail: 1 (basic), 2 (detailed) 
and 3 (advanced).  

- bullxprof.hwc.metrics=<metric1,...,metricN>   
Enables profiling of the selected metrics. Possible metric values are:  

  flops: consumed GFLOPS  

  ibc: Instructions by Cycles  

  cmr: Cache Miss Rate (in %)  

  clr: Cache Line Reuse  

  

mpi experiment Configuration File Options  

- bullxprof.mpi.tracelevel=<number>   
mpi experiment reports specific level of detail: 1 (basic), 2 (detailed) 
and 3 (advanced).  

- bullxprof.timing.mpi.threshold=<float>   
Enables the display of MPI function statistics when percentage of MPI 
region time is over the given value. Set to 0 to disable this feature. 

- bullxprof.mpi.functions=<function1,...,functionN> 

 The list of profiled MPI functions. Supported values are selected from 
the following values: 

 MPI_Allgather, MPI_Allgatherv, MPI_Allreduce, MPI_Alltoall, 
MPI_Alltoallv, MPI_Barrier, MPI_Bcast, MPI_Bsend, MPI_Bsend_init, 
MPI_Cancel, MPI_Cart_create, MPI_Cart_sub, MPI_Comm_create, 
MPI_Comm_dup, MPI_Comm_free, MPI_Comm_split, 
MPI_Comm_compare, MPI_Finalize, MPI_Gather, MPI_Gatherv, 
MPI_Get_count, MPI_Graph_create, MPI_Ibsend, MPI_Init, 
MPI_Intercomm_create, MPI_Intercomm_merge, MPI_Iprobe, MPI_Irecv, 
MPI_Irsend, MPI_Isend, MPI_Issend, MPI_Pack, MPI_Probe, MPI_Recv, 
MPI_Recv_init, MPI_Reduce, MPI_Reduce_scatter, MPI_Request_free, 
MPI_Rsend, MPI_Rsend_init, MPI_Scan, MPI_Scatter, MPI_Scatterv, 
MPI_Send, MPI_Send_init, MPI_Sendrecv, MPI_Sendrecv_replace, 
MPI_Ssend, MPI_Ssend_init, MPI_Test, MPI_Testall, MPI_Testany, 
MPI_Testsome, MPI_Start, MPI_Startall, MPI_Unpack, MPI_Wait, 
MPI_Waitall, MPI_Waitany, MPI_Waitsome 

io experiment Configuration File Options  

- bullxprof.io.tracelevel=<number>   
io experiment reports specific level of detail: 1 (basic), 2 (detailed) and 
3 (advanced).  

- bullxprof.timing.io.threshold=<float>   
Enables the display of POSIX I/O function statistics when percentage of 
POSIX I/O region time is over the given value. Set to 0 to disable this 
feature.  



 

18 bullx DE User's Guide 

- bullxprof.io.functions=<function1,...,functionN> 

 The list of profiled IO functions. Supported values are selected from the 
following values: 

 open, close, creat, creat64, dup, dup2, dup3, lseek, lseek64, open64, 
pipe, pread, pread64, pwrite, pwrite64, read, readv, sync, fsync, 
fdatasync, write, writev 

mpiio experiment Configuration File Options  

- bullxprof.mpiio.tracelevel=<number>   
mpiio experiment reports specific level of detail: 1 (basic), 2 (detailed) 
and 3 (advanced).  

- bullxprof.timing.mpiio.threshold=<float>  
Enables the display of MPI I/O function statistics when percentage of 
MPI I/O region time is over the given value. Set to 0 to disable this 
feature.  

- bullxprof.mpiio.functions=<function1,...,functionN> 

 The list of profiled MPI-IO functions. Supported values are selected from 
the following values: 

 MPI_File_open, MPI_File_close, MPI_File_delete, MPI_File_set_size, 
MPI_File_preallocatePI_File_get_size, MPI_File_get_group, 
MPI_File_get_amode, MPI_File_set_info, MPI_File_get_info, 
MPI_File_set_view, MPI_File_get_view, MPI_File_read_at, 
MPI_File_read_at_all, MPI_File_write_at, MPI_File_write_at_all, 
MPI_File_iread_at,MPI_File_iwrite_at, MPI_File_read, MPI_File_read_all, 
MPI_File_write, MPI_File_write_all, MPI_File_iread, 
MPI_File_iwrite,MPI_File_seek, MPI_File_get_position, 
MPI_File_get_byte_offset, MPI_File_read_shared, 
MPI_File_write_shared, MPI_File_iread_shared, MPI_File_iwrite_shared, 
MPI_File_read_ordered, MPI_File_write_ordered, 
MPI_File_seek_shared, MPI_File_get_position_shared, 
MPI_File_read_at_all_begin, MPI_File_read_at_all_end, 
MPI_File_write_at_all_begin, MPI_File_write_at_all_end, 
MPI_File_read_all_begin, MPI_File_read_all_end,  
MPI_File_write_all_begin, MPI_File_write_all_end, 
MPI_File_read_ordered_begin, MPI_File_read_ordered_end, 
MPI_File_write_ordered_begin, MPI_File_write_ordered_end, 
MPI_File_get_type_extent, MPI_File_set_atomicity, 
MPI_File_get_atomicity, MPI_File_sync, MPI_File_set_errhandler, 
MPI_File_get_errhandler 



 

 Chapter 4. Application Analysis with bullxprof 19 

4.5 Profiling reports 
This section details the information contained in the different profiling reports. 

4.5.1 Timing experiment 

Sequential Program 
For a sequential program, the summary report (produced when the trace level is set to 1) 
gives the following information:  

process walltime The overall execution time of the program 

time  The execution time spent in a region 

percentage The percentage of walltime spent in a region 

 

The detailed report (produced when the trace level is set to 2) gives the following 
information: 

region The region the function belongs to 

number of calls  Number of times the function was called by the program 

exclusive time Time exclusively spent in the function without inner function calls 

percentage Percentage of walltime spent in the function  

Parallel Program 

In a MPI context, the summary report (produced when the trace level is set to 1) gives the 
following information: 

process walltime The execution time of the overall program 

number of processes Number of MPI processes  

Comm/compute ratio  Ratio of time spent communicating on time spent computing 

And per region – ALL, USER, MPI, MPI/IO and I/O - the following information:  

Min Time[rank] The minimum time spent in the region executing the function and the 
candidate process rank 

Max time[rank] The maximum time spent in the region executing the function and the 
candidate process rank 

average time The average time spent the function 

percentage Percentage of walltime spent in the region  



 

20 bullx DE User's Guide 

 

The detailed report (produced when the trace level is set to 2) gives a per region report 
with the following information for each function: 

Min Time[rank] The minimum time spent in the region executing the function and the 
candidate process rank 

Max time[rank] The maximum time spent in the region executing the function and the 
candidate process rank 

average time The average time spent the function 

% region Percentage of the time spent in the region for the function 

% walltime Percentage of the walltime for the function 

4.5.2 HWC experiment 
hwc experiment computes hardware metrics using one or multiple PAPI hardware counters. 
The metric computation is limited to the underlying PAPI counters availability. A selected 
metric might not be displayed when the PAPI hardware counters needed for its computation 
are not available. In that case, a message is logged into the bxprof.err file created in the 
bullxprof launch directory. 

Sequential Program 
For a sequential program, the summary report (produced when the trace level is set to 1) 
gives the global value of user selected HW metrics. 

The detailed report (produced when the trace level is set to 2) gives the user selected HW 
metrics values for each function. The report is dumped metric by metric.  

Parallel Program 

In a MPI context, the summary report (produced when the trace level is set to 1) gives the 
following information for each user selected HW metrics: 

Min Value[rank] The minimum count of the event for the overall program and the 
candidate process rank 

Max Value[rank]  The maximum count of the event for the overall program and the 
candidate process rank 

Average  The average count of the event for the overall program  

Total The cumulated count of the event for the overall program  

4.5.3 MPI experiment 
The summary report (produced when the trace level is set to 1) gives information about four 
(4) groups of MPI functions: 

Point to Point  Send/Receive like MPI functions (MPI_Send, MPI_SendRecv etc.) 

Collective  Collective MPI functions (e.g. MPI_Alltoall, MPI_Reduce etc.) 

Synchronization  MPI_Barrier and MPI_Wait like functions 

All  All MPI functions 



 

 Chapter 4. Application Analysis with bullxprof 21 

For each group of MPI functions, the summary report gives the following information: 

Max time [rank]  The maximum time spent in the functions of the group and the 
candidate process rank  

Min time [rank]  The minimum time spent in the functions of the group and the 
candidate process rank  

Average time  The average time spent in the functions of the group 

Percentage of MPI  The percentage of time spent the MPI region. 

Percentage of walltime  The percentage of walltime 

Max message count [rank]  The maximum number of messages exchanged in the group 
and the candidate process 

Min message count [rank]  The minimum number of messages exchanged in the group 
and the candidate process 

Total message count  The total number of messages exchanged in the group 

Average message count  The average number of messages exchanged in the group 

Message rate  Number of messages exchanged in a second 

Total volume  Total volume of data exchanged (in MB) 

Average volume  Average volume of data exchanged (in MB) 

Bandwidth  Volume of data exchanged in a second (in MB/s) 

 

The detailed report (produced when the trace level is set to 2) gives a report for with the 
following information for each MPI function:  

Min Time[rank]  The minimum time spent executing the MPI function and the candidate 
process rank  

Max time[rank]  The maximum time spent executing the MPI function and the candidate 
process rank  

average time  The average time spent in the MPI function  

% region  Percentage of the MPI time for the MPI function  

% walltime  Percentage of the walltime for the MPI function 

4.5.4 IO experiment 

Sequential Program  

For a sequential program, the summary report (produced when the trace level is set to 1) 
gives the following information: 

Total IO time  Total time spent executing IO functions 

Total IO read time  Total time spent executing IO read-like functions 

Total IO read volume  Total volume of data read (MB) 

Total IO read bandwidth Total volume of data read in a second (MB/s) 

Total IO write time  Total time spent executing IO write-like and close functions 



 

22 bullx DE User's Guide 

Total IO write volume  Total volume of data written (MB) 

Total IO write bandwidth  Total volume of data written in a second (MB/s) 

The detailed report (produced when the trace level is set to 2) gives for each POSIX IO 
function the following information: 

Calls  Total number of call for the IO function 

Executive time  Time spent executing the IO function 

Percentage  Percentage of walltime 

Parallel Program  

In a MPI context, the summary report (produced when the trace level is set to 1) gives 
information about three (3) groups of POSIX IO functions: 

Read  read-like functions (e.g. read, readv etc.) 

Write  write-like (e.g. write, pwrite etc.) and close functions 

Total  All POSIX IO functions 

For each group of POSIX IO functions, the summary report gives the following information: 

Max IO time [rank]  The maximum time spent in the functions of the group and the 
candidate process rank  

Min IO time [rank]  The minimum time spent in the functions of the group and the candidate 
process rank  

Average IO time  The average time spent in the functions of the group 

Percentage of IO time  The percentage of time spent the MPI region. 

Percentage of walltime  The percentage of walltime 

Max IO volume [rank]  The maximum volume of IO data processed in the group and the 
candidate process 

Min IO volume [rank]  The minimum volume of IO data processed in the group and the 
candidate process 

Total volume  Total volume of data processed (in MB) 

Average volume  Average volume of data processed (in MB) 

IO bandwidth  Volume of data processed in a second (in MB/s) 

The detailed report (produced when the trace level is set to 2) gives a report for with the 
following information for each POSIX IO function:  

Min Time[rank]  The minimum time spent executing the IO function and the candidate 
process rank  

Max time[rank]  The maximum time spent executing the IO function and the candidate 
process rank  

average time  The average time spent in the IO function  

% region  Percentage of the IO time for the IO function  

% walltime  Percentage of the walltime for the IO function 



 

 Chapter 4. Application Analysis with bullxprof 23 

4.5.5 MPI/IO experiment 
The summary report (produced when the trace level is set to 1) gives information about 
three (3) groups of MPI/IO functions: 
Read MPI_File_read like functions 

Write  MPI_File_write like functions 

Total  All MPI/IO functions 

For each group of ll MPI/IO functions, the summary report gives the following information: 

Max MPI-IO time [rank]  The maximum time spent in the functions of the group and the 
candidate process rank  

Min MPI-IO time [rank]  The minimum time spent in the functions of the group and the 
candidate process rank  

Average MPI-IO time  The average time spent in the functions of the group 

Percentage of MPI-IO time  The percentage of time spent the MPI region. 

Percentage of walltime  The percentage of walltime 

Max MPI-IO volume [rank]  The maximum volume of ll MPI/IO data processed in the 
group and the candidate process 

Min MPI-IO volume [rank]  The minimum volume of ll MPI/IO data processed in the 
group and the candidate process 

Total volume  Total volume of data processed (in MB) 

Average volume  Average volume of data processed (in MB) 

MPI-IO bandwidth  Volume of data processed in a second (in MB/s) 

The detailed report (produced when the trace level is set to 2) gives a report for with the 
following information for each MPI/IO function:  

Min Time[rank]  The minimum time spent executing the MPI/IO function and the 
candidate process rank  

Max time[rank]  The maximum time spent executing the MPI/IO function and the 
candidate process rank  

average time  The average time spent in the MPI/IO function  

% region  Percentage of the MPI/IO time for the MPI/IO function  

% walltime  Percentage of the walltime for the MPI/IO function 

 

 

 

 

 

 

 

 



 

24 bullx DE User's Guide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Chapter 5. MPI Application Profiling 25 

Chapter 5. MPI Application Profiling 

5.1 MPI Analyser 
This section describes how to use the MPI Analyser profiling tool. 

5.1.1 MPI Analyser Overview 
mpianalyser is a profiling tool, developed by Bull for its own MPI implementation. This is a 
non-intrusive tool, which allows the display of data from counters that has been logged 
when the application runs. mpianalyser uses the PMPI interface to analyze the behavior of 
MPI programs. 

profilecomm is a part of mpianalyser and is dedicated to MPI application profiling. It has 
been designed to be:  

• Light: it uses few resources and so does not slow down the application.  

• Easy to run: it is used to characterize the MPI communications in a program. 
Communication matrices are constructed with it. Profilecomm is a post-mortem tool, 
which does not allow on-line monitoring. 

Data is collected as long as the program is running. At the end of the program, data is 
written into a file for future analysis. 

readpfc is a tool with a command line interface which handles the data that has been 
collected. Its main uses are the following:  

• To display the data collected. 

• To export communication matrices in a format that can be used by other applications. 

Data Collected 

The profilecomm module provides the following information: 
• Communication matrices 
• Execution time 
• Table of calls of MPI functions 
• Message size histograms 
• Topology of the execution environment. 

Environment 

The user environment can be set to use mpianalyser through the provided module files (see 
Section 2.4 bullx DE Module Files): 

• mpianalyser/1.2_link: this module file sets the user environment for linking an MPI 
binary with the mpianalyser's library. Use the MPIANALYSER_LINK environment 
variable can be used to link the binary with mpianalyser. 

• mpianalyser/1.2_preload: this module file sets the user environment for using 
mpianalyser without recompilation of your MPI dynamically linked program. Note that 
this module file sets the LD_PRELOAD variable that will any MPI dynamically linked 
program as long as this module is loaded. It is highly recommended to unload this 
module immediately after your profiling session.  



 

26 bullx DE User's Guide 

5.1.2 Communication Matrices 
The profilecomm library collects separately the point-to-point communications and the 
collective communications. It also collects the number of messages and the volume that the 
sender and receiver have exchanged. Finally, the library builds 4 types of communication 
matrices: 
• Communication matrix of the number of point to point messages 
• Communication matrix of the volume (in bytes) of point to point messages 
• Communication matrix of the number of collective messages 
• Communication matrix of the volume (in bytes) of collective messages 

The volume only indicates the payload of the messages. 

In order to compute the standard deviation of messages size, two other matrices are 
collected. They contain the sum of squared messages sizes for point-to-point and for 
collective communications. 

In order to obtain precise information about messages sizes, each numeric matrix can be 
split into several matrices according to the size of the messages. The number of partitions 
and the size limits can be defined through the PFC_PARTITIONS environment variable. In a 
point-to-point communication, the sender and receiver of each message is clearly identified, 
this results in a well defined position in the communication matrix. 

In a collective communication, the initial sender(s) and final receiver(s) are identified, but 
the path of the message is unknown. The profilecomm library disregards the real path of 
the messages. A collective communication is shown as a set of messages sent directly by 
the initial sender(s) to the final receiver(s). 

Execution Time 
The measured execution time is the maximum time interval between the calls to MPI_Init 
and MPI_Finalize  for all the processes. By default, the processes are synchronized during 
measurements. However, if necessary, the synchronization may be by-passed using an 
option of the profilecomm library. 

Call Table 
The call table contains the number of calls for each profiled function of each process. For 
collective communications, since a call generates an unknown number of messages, the 
values indicated in the call table do not correspond to the number of messages. 

Histograms 
profilecomm collects two messages size histograms, one for point-to-point and one for 
collective communications. Each histogram contains the number of messages for sizes 0, 1 
to 9, 10 to 99, 100 to 999, ..., 108 to 109-1 and bigger than 109 bytes. 

5.1.3 Topology of the Execution Environment  
The profilecomm module registers the topology of the execution environment, so that the 
machine and the CPU on which each process is running can be identified, and above all 
the intra- and inter-machine communications made visible. 



 

 Chapter 5. MPI Application Profiling 27 

5.1.4 Using profilecomm  
When using profilecomm there are 2 separate operations – data collection, and then its 
analysis. To be profiled by profilecomm, an application must be linked with the MPI 
Analyser library.  

profilecomm is disabled by default, to enable it, set the following environment variable: 

export MPIANALYSER_PROFILECOMM=1 

When the application finishes, the results of the data collection are written to a file 
(mpiprofile.pfc by default). By default, this file is saved in a format specific to profilecomm, 
but it is possible to save it in a text format. The readpfc command enables .pfc files to be 
read and analyzed. 

5.1.4.1 profilecomm Options 

Different options may be specified for profilecomm using the PFC_OPTIONS environment 
variable. 

For example: 

export PFC_OPTIONS=”-f foo.pfc” 

Some of the options that modify the behavior of profilecomm when saving the results in a 
file are below: 

-f file, -filename file  
Saves the result in the file file instead of the default file (mpiprofile.txt for text format files 
and mpiprofile.pfc for profilecomm binary format files).  

-t, -text 
Saves the result in a text format file, readable with any text editor or reader. This format is 
useful for debugging purpose but it is not easy to use beyond 10 processes.  

-b, -bin 
Saves the results in a profilecomm binary format file. This is the default format. The readpfc 
command is required to work with these files.  

-s, -sync 
Synchronizes the processes during the time measurements. This option is set by default.  

-ns, -nosync 
Does not synchronize the processes during the time measurements.  

-v32, -volumic32 
Use 32 bit volumic matrices. This can save memory when profiling application with a large 
number of processes. A process must not send more than 4GBs of data to another process. 

-v64, -volumic64 
Use 64 bits volumic matrices. This is the default behavior.  It allows the profiling of 
processes which exchanges more than 4GBs of data. 

Examples 

To profile the foo program and save the results of the data collection in the default file 
mpiprofile.pfc: 

$ MPIANALYSER_PROFILECOMM=1 srun –p my_partion –N 1 -n 4./foo 



 

28 bullx DE User's Guide 

To save the results of the data collection in the foo.pfc file: 

$ MPIANALYSER_PROFILECOMM=1 PFC_OPTIONS="-f foo.pfc" srun –p my_partion –N 1 -n 
4./foo 

To save the result of the collect in text format in the foo.txt file: 

$ MPIANALYSER_PROFILECOMM=1 PFC_OPTIONS="-t -f foo.txt" srun –p my_partion –N 1 -n 
4./foo 

5.1.4.2 Messages Size Partitions 

profilecomm allows the numeric matrices to be split according to the size of the messages. 
This feature is activated by setting the PFC_PARTITIONS environment variable. By default, 
there is only one partition, i.e. the numeric matrices are not split.  
The PFC_PARTITIONS environment variable must be of the form [partitions:] [limits] in 
which partitions represents the number of partitions and limits is a comma separated list of 
sorted numbers representing the size limits in bytes. 
If limits is not set, profilecomm uses the built-in default limits for the requested partition 
number. 

Example 1 

3 partitions using the default limits (1000, 1000000): 

$ export PFC_PARTITIONS="3:" 

Example 2  

3 partitions using user defined limits (in this case, the partition number can be safely 
omitted): 

$ export PFC_PARTITIONS="3:500,1000" 

Or : 

$ export PFC_PARTITIONS="500,1000" 

Note  profilecomm supports a maximum of 10 partitions only. 

5.1.5 profilecomm Data Analysis 
To analyze data collected with profilecomm, the readpfc command and other tools 
(including spreadsheets), can be used. The main features of readpfc are the following: 

• Displaying the data contained in profilecomm files. 

• Exporting communication matrices in standard file formats. 

5.1.5.1 readpfc syntax 

readpfc [options] [file] 

If file is not specified, readpfc reads the default file mpiprofile.pfc in the current 
directory. 



 

 Chapter 5. MPI Application Profiling 29 

Readpfc output 

The main feature of readpfc is to display the information contained in the seven different 
sections of a profilecomm file. These are: 

• Header  
• Point to point  
• Collective  
• Call table  
• Histograms 
• Statistics  
• Topology 

Note  The header, histograms, statistics and topology sections are not included in the output 
when the -t, -text text format options are used. 

5.1.5.2 Header Section 

Displays information contained into the header of a profilecomm file. The more interesting 
fields are: 

• Elapsed Time – indicates the length of the data collection 

• World size - indicates the number of processes 

• Number of partitions – indicates the number of partitions 

• Partitions limits – indicates the list of size limits for the messages partitions (only used if 
there are several partitions). 

The other fields are less interesting for  final users but are used internally by readpfc. 

Example 

Header: 
 Version: 2 
 Flags: little-endian 
 Header size: 40 bytes 
 Elapsed time: 9303 us 
 World size: 4 
 Number of partitions: 3 
 Partitions limits:  1000  1000000 
 num_intsz: 4 bytes (32 bits) 
 num_volsz: 8 bytes (64 bits) 

5.1.5.3 Point to Point Communications Section 

For point to point communication matrices, use the following. The number of 
communication messages is displayed first, then the volume. If either the  –-numeric-only or –
-volumic-only options are used then only one matrix is displayed accordingly. 

Example 

Point to point: 
 numeric (number of messages) 
      0   1.1k      0      0 |   1.1k 
   1.1k      0      0      0 |   1.1k 
      0      0      0   1.1k |   1.1k 
      0      0   1.1k      0 |   1.1k 



 

30 bullx DE User's Guide 

 
 volumic (Bytes) 
      0 818.8k      0      0 | 818.8k 
 818.8k      0      0      0 | 818.8k 
      0      0      0 818.8k | 818.8k 
      0      0 818.8k      0 | 818.8k 

If the file contains several partitions and the -J/--split option is set then this command 
displays as many numeric matrices as there are partitions. Example: 

Point to point: 
 numeric (number of messages) 
 0 <= msg size < 1000 
      0    800      0      0 |    800 
    800      0      0      0 |    800 
      0      0      0    800 |    800 
      0      0    800      0 |    800 
 
 1000 <= msg size < 1000000 
      0    300      0      0 |    300 
    300      0      0      0 |    300 
      0      0      0    300 |    300 
      0      0    300      0 |    300 
 
 1000000 <= msg size 
      0      0      0      0 |      0 
      0      0      0      0 |      0 
      0      0      0      0 |      0 
      0      0      0      0 |      0 
 
 volumic (Bytes) 
      0 818.8k      0      0 | 818.8k 
 818.8k      0      0      0 | 818.8k 
      0      0      0 818.8k | 818.8k 
      0      0 818.8k      0 | 818.8k 

If the -r/--rate option is set then the messages rate and data rate matrices are shown 
instead of communications matrices. These rates are the average rates for all execution 
times not the instantaneous rates. Example: 

Point to point: 
 message rate (msg/s) 
      0 118.2k      0      0 | 118.2k 
 118.2k      0      0      0 | 118.2k 
      0      0      0 118.2k | 118.2k 
      0      0 118.2k      0 | 118.2k 
 
 data rate (Bytes/s) 
      0 88.01M      0      0 | 88.01M 
 88.01M      0      0      0 | 88.01M 
      0      0      0 88.01M | 88.01M 
      0      0 88.01M      0 | 88.01M 

5.1.5.4 Collective Section 
The collective section is equivalent to the point-to-point section for collective communication 
matrices. Example:  

Collective: 
 numeric (number of messages) 
      0    102    202    102 |    406 
    102      0      0    100 |    202 
    202      0      0      0 |    202 
    102    100      0      0 |    202 



 

 Chapter 5. MPI Application Profiling 31 

 
 volumic (Bytes) 
      0 409.6k 421.6k 409.6k | 1.241M 
 12.04k      0      0    12k | 24.04k 
 421.6k      0      0      0 | 421.6k 
 12.04k 409.6k      0      0 | 421.6k 

5.1.5.5 Call table section 
This section contains the call table. If the –-ct-total-only option is activated, only the 
total column is displayed. Example:  

Call table: 
                      0      1      2      3      4      5      6      7  Total 
Allgather             0      0      0      0      0      0      0      0      0 
Allgatherv            0      0      0      0      0      0      0      0      0 
Allreduce             2      2      2      2      2      2      2      2     16 
Alltoall              0      0      0      0      0      0      0      0      0 
Alltoallv             0      0      0      0      0      0      0      0      0 
Bcast               200    200    200    200    200    200    200    200   1.6k 
Bsend                 0      0      0      0      0      0      0      0      0 
Gather                0      0      0      0      0      0      0      0      0 
Gatherv               0      0      0      0      0      0      0      0      0 
Ibsend                0      0      0      0      0      0      0      0      0 
Irsend                0      0      0      0      0      0      0      0      0 
Isend                 0      0      0      0      0      0      0      0      0 
Issend                0      0      0      0      0      0      0      0      0 
Reduce              200    200    200    200    200    200    200    200   1.6k 
Reduce_scatter        0      0      0      0      0      0      0      0      0 
Rsend                 0      0      0      0      0      0      0      0      0 
Scan                  0      0      0      0      0      0      0      0      0 
Scatter               0      0      0      0      0      0      0      0      0 
Scatterv              0      0      0      0      0      0      0      0      0 
Send               1.1k   1.1k   1.1k   1.1k   1.1k   1.1k   1.1k   1.1k   8.8k 
Sendrecv              0      0      0      0      0      0      0      0      0 
Sendrecv_replace      0      0      0      0      0      0      0      0      0 
Ssend                 0      0      0      0      0      0      0      0      0 
Start                 0      0      0      0      0      0      0      0      0 

5.1.5.6 Histograms Section 

This section contains the message sizes histograms. It shows the number of messages 
whose size is zero, between 1 and 9, between 10 and 99, ..., between 108 and 109-1 
and greater than 109.  

Example: 

Histograms of msg sizes 
size   pt2pt   coll  total 
   0       0      0      0 
   1     800      6    806 
  10    1.2k      6 1.206k 
 100    1.2k    500   1.7k 
1000    1.2k    500   1.7k 
104       0      0      0 
105       0      0      0 
106       0      0      0 
107       0      0      0 
108       0      0      0 
109       0      0      0 



 

32 bullx DE User's Guide 

5.1.5.7 Statistics Section 

This section displays statistics computed by readpfc. These statistics are based on the 
information contained in the data collection file. This section is divided into two or three 
sub-sections:  

• The General statistics section contains statistics for the whole application. 

• The Per process average section contains averages per process. 

• The Messages sizes partitions section displays the distribution of messages among the 
partitions. This section is only present if there are several partitions. 

• For each statistic we distinguish point to point communications from collective 
communications.  

Example 

General statistics: 
Total time: 0.009303s  (0:00:00.009303) 
                       pt2pt |       coll |      total 
Messages count  |       4400 |       1012 |       5412 
Volume          |   3.2752MB |  2.10822MB |  5.38342MB 
Avg message size|       744B |  2.08322kB |       995B 
Std deviation   |     1216.4 |     1989.1 |     1488.4 
Variation coef. |     1.6341 |    0.95481 |     1.4963 
Frequency msg/s |   472.966k |   108.782k |   581.748k 
Throughput B/s  | 352.06MB/s | 226.62MB/s | 578.68MB/s 
 
Per process average: 
                       pt2pt |       coll |      total 
Messages count  |       1100 |        253 |       1353 
Volume          |    818.8kB |  527.054kB |  1.34585MB 
Frequency msg/s |   118.241k |   27.1955k |   145.437k 
Throughput B/s  | 88.015MB/s | 56.654MB/s | 144.67MB/s 
 
Messages sizes partitions: 
                              |   pt2pt count |    coll count  |   total 
count 
         0 <= sz < 1000       |  3.2e+03  73% |  5.1e+02  51% |  3.7e+03  69% 
      1000 <= sz < 1000000    |  1.2e+03  27% |    5e+02  49% |  1.7e+03  31% 
   1000000 <= sz              |        0   0% |        0   0% |        0   0% 

The message sizes partitions should be examined first. 

Where: 

Total time Total execution time between MPI_Init and MPI_Finalize 

Messages count Number of sent messages 

Volume Volume of sent messages (bytes) 

Avg message size Average size of messages (bytes) 

Std deviation Standard deviation of messages size 

Variation coef. Variation coefficient of messages size 

Frequency msg/s Average frequency of messages (messages per second) 

Throughput B/s Average throughput for sent messages (bytes per second) 



 

 Chapter 5. MPI Application Profiling 33 

5.1.5.8 Topology Section 

This section shows the distribution of processes on nodes and processors. This distribution is 
displayed in two different ways: 

First, for each process the node and the CPU in the node where it is running and secondly, 
the list of running processes for each node.  

Example - 8 Processes Running on 2 Nodes 

Topology: 
8 process on 2 hosts 
process hostid  cpuid 
      0      0      0 
      1      0      1 
      2      0      2 
      3      0      3 
      4      1      0 
      5      1      1 
      6      1      2 
      7      1      3 
 
host  processes 
   0  0 1 2 3 
   1  4 5 6 7 

5.1.6 Profilecomm Data Display Options 
The following options can be used to display the data:  

-a, --all 
Displays all the information. Equivalent to –ghimst. 

-c, --collective 
Displays collective communication matrices.  

-g, --topology 
Displays the topology of execution environment.  

-h, --header 
Displays header of the profilecomm file.  

-i, --histograms 
Displays messages size histograms. 

-j, --joined 
Displays entire numeric matrices (i.e. not split). This is the default. 

-J, --splitted 
Display numeric matrices split according to messages size. 

-m, --matrix, --matrices  
Displays communication matrix (matrices). Equivalent to –cp. 

-n, --numeric-only 
Does not display volume matrices. This option cannot be used simultaneously with the -v/-
-volumic-only option. 

-p, --p2p, --pt2pt  
Displays point to point communication matrices.  



 

34 bullx DE User's Guide 

-r, --rate, --throughput 
Displays messages rate and data rate matrices instead of communications matrices. 

-s, --statistics 
Computes and displays some statistics regarding MPI communications.  

-S, --scalable 
Displays all scalable information; this means all information whose size is independent of 
number of processes. Useful when there is a great number of processes. Equivalent to histT.  

--square-matrices 
Displays the matrices containing the sum of the squared sizes of messages. These matrices 
are used for standard deviation computation and are useless for final users. This option is 
mainly provided for debugging purposes. 

-t, --calltable 
Displays the call table.  

-T, --ct-total-only  
Displays only the Total column of the call table. By default readpfc displays also one 
column for each process. 

-v, --volumic-only 
Does not display numeric matrices. This option cannot be used simultaneously with -n/--
numeric-only option. 



 

 Chapter 5. MPI Application Profiling 35 

5.1.7 Exporting a Matrix or an Histogram 
The communication matrices and the histograms can be exported in different formats that 
can be used by other software programs, for example spreadsheets. Three formats are 
available: CSV (Comma Separated Values), MatrixMarket (not available for histogram 
exports) and gnuplot.  

It is also possible to have a graphical display of the matrix or the histogram, which is better 
for matrices with a large number of elements. Obviously, it is also possible to include the 
graphics in a report. Seven graphic formats are available: PostScript, Encapsulated 
PostScript, SVG, xfig, EPSLaTeX, PSLaTeX and PSTeX. All these formats are vectorial, which 
means the dimensions of the graphics can be modified if necessary. 

 

Figure 5-1.  An example of a communication matrix 

 

Figure 5-2.  An example of a histogram 



 

36 bullx DE User's Guide 

5.1.7.1 Options 

The following options may be used when exporting matrices: 
--csv-separator sep  Modifies CSV delimiter. Default delimiter is comma 

“,”. Some software programs prefer a semicolon “;”.  

-f format, --format format   Chooses export format. Default format is CSV 
(Comma Separated Values). 

help Lists available export formats 

csv Export in CSV format 

mm, market, MatrixMarket Export in MatrixMarket format 

gp, gnuplot Export in a format used by pfcplot so that a 
graphical display of the matrix can be produced 

ps, postscript Export in PostScript format 

eps Export in Encapsulated PostScript format 

svg Export in Scalable Vector Graphics format 

fig, xfig Export in xfig format 

epslatex Export in LaTex and Encapsulated PostScript format 

pslatex Export in LaTex format and PostScript inline 

pstex Export in Tex format and PostScript inline 

The available values are the following:  
  

 
mportant When using epslatex two files are written: xxx.tex and xx.eps. The filename 

indicated in the –o option is the name of the Latex file.    

--logscale[=base]  
Uses a logarithmic color scale. Default value for logarithm basis is 10; this basis can be 
modified using the base argument. This option is only relevant when exporting in a 
graphical format.  

--nogrid 
Does not display the grid on a graphical representation of the matrix. 

-o file, --output file  
Specifies the file name for an export file. The default filenames are out.csv, out.mm, out.dat, 
out.ps, out.svg, out.fig or out.tex, according to export format. This option is only available 
with the –x option. 

--palette pal  
Uses a personalized colored palette. This option is only relevant when exporting in a 
graphical format. This palette must be compatible with the defined function of gnuplot, 
for instance:  
--palette '0 "white", 1 "red", 2 "black"' or  --palette '0 
"#0000ff", 1 "#ffff00", 2 "ff0000"' 

--title title  
Uses a personalized title for a graphical display. The default title is Point-to-point/collective 
numeric/volumic communication matrix, according to the exported matrix. 



 

 Chapter 5. MPI Application Profiling 37 

-x object, --export object  
Exports a communication matrix or histogram specified by the object argument. Values 
for object are the following:  

help List of available matrices and histograms 

pn[.part],  

np[.part]  

Point-to-point numeric communication matrix. The optional item part is the 
partition number for split matrices. If part is not set, the entire matrix (i.e. the 
sum of the split matrices) is exported. 

pv, vp  Point to point volumic communication matrix  

cn[.part], 

nc[.part] 

Collective numeric communication matrix  

cv, vc  Collective volumic communication matrix  

ph, hp  Point-to-point messages size histogram 

ch, hc  Collective messages size histogram  

th, ht  Total messages size histogram (collective and point-to-point) 

ah, ha  Both point-to-point and collective messages size histograms (all histograms) 

Other options 

-H, --help, --usage  Displays help messages  

-q, --quiet Does not display help warning messages (error messages continue to 
be displayed). 

-V, --version Displays program version.  

Examples 

• To display all information available in foo.pfc file, enter: 

$ readpfc -a foo.pfc 

This will give information similar to that below 

Header: 
 Version: 2 
 Flags: little-endian 
 Header size: 40 bytes 
 Elapsed time: 9303 us 
 World size: 4 
 Number of partitions: 3 
 Partitions limits:  1000  1000000 
 num_intsz: 4 bytes (32 bits) 
 num_volsz: 8 bytes (64 bits) 
[...] 
Topology: 
4 process on 1 hosts 
process hostid  cpuid 
      0      0      0 
      1      0      1 
      2      0      2 
      3      0      3 
 
host  processes 
   0  0 1 2 3 



 

38 bullx DE User's Guide 

• To display a point to point numerical communication matrix: 

$ readpfc -pn foo.pfc 

Point to point: 
 numeric (number of messages) 
      0   1.1k      0      0 |   1.1k 
   1.1k      0      0      0 |   1.1k 
      0      0      0   1.1k |   1.1k 
      0      0   1.1k      0 |   1.1k 

• To export the collective volumic communication matrix in CSV format in the default file:  

$ readpfc –x cv foo.pfc 

Warning: No output file specified, write to default (out.csv). 

$ ls out.csv 

out.csv 

• To export the first part (small messages) of point to point numerical communication 
matrices in PostScript format in the foo.ps file: 

$ readpfc -x np.0 -f ps -o foo.ps foo.pfc 
$ ls foo.ps 

foo.ps 

5.1.7.2 pfcplot, histplot and gnuplot 

The pfcplot script converts matrices into graphic using gnuplot. It is generally used by 
readpfc, but can be used directly by the user who wants more flexibility. The matrix must 
be exported with the –f gnuplot option to be read by pfcplot.  

For more details enter: 

man pfcplot 

Users who have particular requirements can invoke gnuplot directly. To do this the matrix 
must be exported with gnuplot format or with CSV format, choosing space as the 
separator.  

  

 
mportant Due to the limitations of gnuplot, one null line and one null column are added to 

the exported matrix in gnuplot format. 

Histplot is the equivalent of pfcplot for histograms. Like pfcplot, it can be used directly by 
users but it is not user-friendly. More details are available from the man page: 

man histplot 



 

 Chapter 5. MPI Application Profiling 39 

5.2 Scalasca 
This section describes how to use the Scalasca performance analysis toolset. 

5.2.1 Scalasca Overview 
Scalasca (Scalable Performance Analysis of Large-Scale Applications) is an Open-Source 
performance-analysis toolset that has been specifically designed for use on large-scale 
systems. It is also well adapted for small and medium-scale HPC platforms.  
Scalasca supports incremental performance-analysis procedures that integrate runtime 
summaries with in-depth studies of concurrent behavior via event tracing, adopting a 
strategy of successively refined measurement configurations. A distinctive feature is the 
ability to identify wait states that occur, for example, due to unevenly distributed 
workloads. Such wait states can lead to poor performance, especially when trying to scale 
communication-intensive applications to large processor counts.  

The current version of Scalasca supports the performance analysis of applications based on 
the MPI, OpenMP, and hybrid programming constructs (OpenMP and hybrid with 
restrictions) most widely used in highly scalable HPC applications written in C, C++ and 
Fortran on a wide range of current HPC platforms. The user can choose between 
generating a summary report (profile) with aggregate performance metrics for individual 
function call-paths, and/or generating event traces recording individual runtime events. 
Scalasca allows switching between both options to occur, without re-compiling or re-
linking.  

Summarization is particularly useful, as it presents an overview of performance behavior 
and of local metrics such as those derived from hardware counters. In addition, it can also 
be used to optimize the instrumentation for later trace generation. When tracing is 
enabled, each process generates a trace file containing records for all the process local 
events.  

Following program termination, Scalasca loads the trace files into main memory and 
analyzes them in parallel, using as many CPUs as have been used for the target 
application itself. During the analysis, Scalasca searches for characteristic patterns 
indicating wait states and related performance properties, classifies detected instances by 
category and quantifies their significance. The result is a pattern-analysis report similar in 
structure to the summary report, but enriched with higher-level communication and 
synchronization inefficiency metrics. 



 

40 bullx DE User's Guide 

5.2.2 Scalasca Usage 
Using Scalasca consists in loading a module file, which will set the different paths for 
binaries and libraries.  

The Scalasca package provides three module files:  

• scalasca/<version>_bullxmpi -gnu 
This module file is to be loaded to use Scalasca with applications compiled with 
bullxMPI or any OpenMPI based MPI implementation and using GNU compilers. 

• scalasca/<version>_bullxmpi -intel 
This module file is to be loaded to use Scalasca with applications compiled with 
bullxMPI or any OpenMPI based MPI implementation and using Intel compilers. 

• scalasca/<version>_intelmpi  
This module file is to be loaded to use Scalasca with applications compiled with Intel 
MPI and Intel compilers. 

To be able to use Scalasca with an application, the first step is to recompile the application 
to get it instrumented.  

In addition to an almost automatic approach using compiler-inserted instrumentation, semi-
automatic POMP and manual instrumentation approaches are also supported.  
Manual instrumentation can be used either to augment automatic instrumentation with 
region or phase annotations, which can improve the structure of analysis reports – or if 
other instrumentations fail.  
Once the application instrumented, next steps are execution measurement collection and 
analysis, and analysis report examination. 
Use the scalasca command with appropriate action flags to instrument application object 
files and executables, analyze execution measurements, and interactively examine 
measurement/analysis experiment archives: 

Note  The PDT-based source-code instrumentation is not supported by this integrated version of 
Scalasca. 

http://www.vi-hps.org/upload/material/tw11/Scalasca.pdf 

5.2.3 More Information 
For a full workflow example and more about the application performance analysis, see:  
http://www.vi-hps.org/upload/material/tw11/Scalasca.pdf 

For more information on Scalasca concepts and projects, see: 
http://www.scalasca.org. 

http://www.vi-hps.org/upload/material/tw11/Scalasca.pdf
http://www.vi-hps.org/upload/material/tw11/Scalasca.pdf
http://www.scalasca.org/


 

 Chapter 5. MPI Application Profiling 41 

5.3 xPMPI 
xPMPI is a framework allowing the use of multiple PMPI tools. PMPI is the MPI profiling 
layer defined by the MPI standard to allow the interception of MPI function calls. By 
definition, only one tool can intercept a function and forward the call to the real 
implementation library. xPMPI is a framework that acts as a PMPI multiplexer by 
intercepting the MPI function calls and forwards the call to a chain of patched PMPI tools. 

5.3.1 Supported tools 
xPMPI allows the combination of the following PMPI tools: 

IPM 

IPM is a portable profiling tool for parallel codes. It provides a low-overhead performance 
profile of the performance aspects and resource utilization in a parallel program. 
Communication, computation, and IO are the primary focus. 

At the end of a run, IPM dumps a text-based report where aggregate wallclock time, 
memory usage and flops are reported along with the percentage of wallclock time spent in 
MPI calls, as shown in the following example: 

##IPMv0.983######################################################## 
#  
# command : ./TF (completed)  
# host : dakar1/x86_64_Linux mpi_tasks : 4 on 1 nodes  
# start : 09/14/12/11:28:37 wallclock : 5.381077 sec  
# stop : 09/14/12/11:28:42 %comm : 7.15  
# gbytes : 9.64523e-01 total gflop/sec : 0.00000e+00 total  
#  
################################################################### 
# region : * [ntasks] = 4  
#  
# [total] <avg> min max  
# entries 4 1 1 1  
# wallclock 21.517 5.37924 5.3785 5.38108  
# user 25.47 6.3675 6.29 6.44  
# system 0.88 0.22 0.16 0.26  
# mpi 1.53893 0.384732 0.0103738 0.53211  
# %comm 7.14973 0.192783 9.89294  
# gflop/sec 0 0 0 0  
# gbytes 0.964523 0.241131 0.241112 0.241161  
#  
#  
# [time] [calls] <%mpi> <%wall>  
# MPI_Allreduce 0.769333 72 49.99 3.58  
# MPI_Send 0.628268 637 40.83 2.92  
# MPI_Barrier 0.0887964 432 5.77 0.41  
# MPI_Bcast 0.048476 148 3.15 0.23  
# MPI_Irecv 0.00139042 563 0.09 0.01  
# MPI_Reduce 0.00099695 16 0.06 0.00  
# MPI_Wait 0.000902604 560 0.06 0.00  
# MPI_Gather 0.000289791 8 0.02 0.00  
# MPI_Recv 0.000234257 74 0.02 0.00  
# MPI_Comm_size 0.00013079 991 0.01 0.00  
# MPI_Waitall 3.91998e-05 1 0.00 0.00  
# MPI_Probe 3.63181e-05 3 0.00 0.00  
# MPI_Comm_rank 3.54093e-05 232 0.00 0.00  
##################################################################### 



 

42 bullx DE User's Guide 

Note  In the context of xPMPI, the user applications have not to be recompiled. Hardware 
counters profiling is not supported by this integrated version of IPM. 

mpiP 

mpiP is a lightweight profiling library for MPI applications. Because it only collects 
statistical information about MPI functions, mpiP generates considerably less overhead and 
much less data than tracing tools. All the information captured by mpiP is task-local. It only 
uses communication during report generation, typically at the end of the experiment, to 
merge results from all of the tasks into one output file. 

Note  In the context of xPMPI, the user applications have not to be recompiled. 

At the end of the run, mpiP generates a .mpiP report file in the current directory (default). 
We suggest modifying this default to your favorite directory, setting the environment 
variable MPIP as follows: 

export MPIP="-f /myhome/myfavourite/the_appli"  

See http://mpip.sourceforge.net/#mpiP_Output for a complete description of the results. 

Should you want to influence the mpiP runtime and customize the generated report, more 
options are available with the environment variable MPIP there: 
http://mpip.sourceforge.net/#Runtime_Configuration 

5.3.2 xPMPI Configuration 
The combination of tools can be managed with a configuration file indicating which tools 
are activated and their order of execution. 

###############################################################  
#  
# XPMPI configuration file  
#  
###############################################################  
module mpiP  
module ipm  

The keyword module declares that the tool is activated. The tools are chained in their order 
of declaration. 

A default configuration file is installed in the following location: 
/opt/bullxde/mpicompanions/xPMPI/etc/xpmpi.conf 

A user-defined configuration file can be specified with the PNMPI_CONF environment file. 

export PNMPI_CONF=<path to user defined configuration file> 

5.3.3 xPMPI Usage 
Using xPMPI consists in loading a module file. The environment will be set to allow the tool 
to intercept MPI functions call without changing the application regular launch process. 

Do not forget to unload the module file to disable the use of xPMPI after a profiling session. 

 

http://mpip.sourceforge.net/#mpiP_Output
http://mpip.sourceforge.net/#Runtime_Configuration


 

 Chapter 6. Analyzing Application Performance 43 

Chapter 6. Analyzing Application Performance 
Different tools are available to monitor the performance of your application, and to help 
identify problems and to highlight where performance improvements can be made. These 
include: 

• PAPI, an open source tool 

• Bull Performance Monitor (bpmon), a Linux command line single node performance 
monitoring tool, which uses the PAPI interface to access the hardware performance 
events (counters) of most processors. 

• HPCToolkit, an open source tool based on PAPI and included in the bullx 
supercomputer suite delivery. 

• Bull-Enhanced HPCToolkit, based on the current HPCToolkit, it provides added value 
for HPC users needing profile based performance analysis in order to optimize their 
running software applications 

• Open|SpeedShop an open source multi platform Linux performance tool 

6.1 PAPI 
PAPI (Performance API) is used for the following reasons: 

• To provide a solid foundation for cross-platform performance analysis tools 
• To present a set of standard definitions for performance metrics on all platforms 
• To provide a standard API among users, vendors and academics 

PAPI supplies two interfaces: 

• A high-level interface, for simple measurements 
• A low-level interface, programmable, adaptable to specific machines and linking the 

measurements 

PAPI should only be used by specialists interested in optimizing scientific programs. These 
specialists can focus on code sequences using PAPI functions.  
PAPI tools are all open source tools. 

6.1.1 High-level PAPI Interface 
The high-level API provides the ability to start, stop and read the counters for a specified list 
of events. It is particularly well designed for programmers who need simple event 
measurements, using PAPI preset events. 
Compared with the low-level API the high-level is easier to use and requires less setup 
(additional calls). However, this ease of use leads to a somewhat higher overhead and the 
loss of flexibility. 

Note  Earlier versions of the high-level API are not thread safe. This restriction has been removed 
with PAPI 3. 



 

44 bullx DE User's Guide 

Below is a simple code example using the high-level API: 

#include <papi.h> 
 
#define NUM_FLOPS 10000 
#define NUM_EVENTS 1 
 
main() 
{ 
int Events[NUM_EVENTS] = {PAPI_TOT_INS}; 
long_long values[NUM_EVENTS]; 
 
/* Start counting events */ 
if (PAPI_start_counters(Events, NUM_EVENTS) != PAPI_OK) 
   handle_error(1); 
 
/* Defined in tests/do_loops.c in the PAPI source distribution */ 
do_flops(NUM_FLOPS); 
 
/* Read the counters */ 
if (PAPI_read_counters(values, NUM_EVENTS) != PAPI_OK) 
   handle_error(1); 
 
printf("After reading the counters: %lld\n",values[0]); 
 
do_flops(NUM_FLOPS); 
 
/* Add the counters */ 
if (PAPI_accum_counters(values, NUM_EVENTS) != PAPI_OK) 
   handle_error(1); 
printf("After adding the counters: %lld\n", values[0]); 
 
/* double a,b,c; c+= a* b; 10000 times  */ 
do_flops(NUM_FLOPS); 
 
/* Stop counting events */ 
if (PAPI_stop_counters(values, NUM_EVENTS) != PAPI_OK) 
   handle_error(1); 
 
printf("After stopping the counters: %lld\n", values[0]); 
} 

Possible Output: 

After reading the counters: 441027 
After adding the counters: 891959 
After stopping the counters: 443994 

Note that the second value (after adding the counters) is approximately twice as large as 
the first value (after reading the counters). This is because PAPI_read_counters resets and 
leaves the counters running, then PAPI_accum_counters adds the current counter value into 
the values array.  



 

 Chapter 6. Analyzing Application Performance 45 

6.1.2 Low-level PAPI Interface 
The low-level API manages hardware events in user-defined groups called Event Sets. It is 
particularly well designed for experienced application programmers and tool developers 
who need fine-grained measurements and control of the PAPI interface. Unlike the high-
level interface, it allows both PAPI preset and native event measurements. 

The low-level API features the possibility of getting information about the executable and the 
hardware, and to set options for multiplexing and overflow handling. Compared with high-
level API, the low-level API increases efficiency and functionality. 

An Event Set is a user-defined group of hardware events (preset or native) which, all 
together, provide meaningful information. The users specify the events to be added to the 
Event Set and attributes such as the counting domain (user or kernel), whether or not the 
events are to be multiplexed, and whether the Event Set is to be used for overflow or 
profiling. PAPI manages other Event Set settings such as the low-level hardware registers to 
use, the most recently read counter values and the Event Set state (running / not running). 

Following is a simple code example using the low-level API. It applies the same technique 
as the high-level example. 

#include <papi.h> 
#include <stdio.h> 
 
#define NUM_FLOPS 10000 
 
main() 
{ 
int retval, EventSet=PAPI_NULL; 
long_long values[1]; 
 
/* Initialize the PAPI library */ 
retval = PAPI_library_init(PAPI_VER_CURRENT); 
if (retval != PAPI_VER_CURRENT) { 
  fprintf(stderr, "PAPI library init error!\n"); 
  exit(1); 
} 
 
/* Create the Event Set */ 
if (PAPI_create_eventset(&EventSet) != PAPI_OK) 
    handle_error(1); 
 
/* Add Total Instructions Executed to our Event Set */ 
if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK) 
    handle_error(1); 
 
/* Start counting events in the Event Set */ 
if (PAPI_start(EventSet) != PAPI_OK) 
    handle_error(1); 
 
/* Defined in tests/do_loops.c in the PAPI source distribution */ 
do_flops(NUM_FLOPS); 
 
/* Read the counting events in the Event Set */ 
if (PAPI_read(EventSet, values) != PAPI_OK) 
    handle_error(1); 
 
printf("After reading the counters: %lld\n",values[0]); 
 
/* Reset the counting events in the Event Set */ 
if (PAPI_reset(EventSet) != PAPI_OK) 
  handle_error(1); 
 
do_flops(NUM_FLOPS); 



 

46 bullx DE User's Guide 

 
/* Add the counters in the Event Set */ 
if (PAPI_accum(EventSet, values) != PAPI_OK) 
   handle_error(1); 
printf("After adding the counters: %lld\n",values[0]); 
 
do_flops(NUM_FLOPS); 
 
/* Stop the counting of events in the Event Set */ 
if (PAPI_stop(EventSet, values) != PAPI_OK) 
    handle_error(1); 
 
printf("After stopping the counters: %lld\n",values[0]); 
 } 

Possible output: 

After reading the counters: 440973 
After adding the counters: 882256 
After stopping the counters: 443913 

Note that PAPI_reset is called to reset the counters, because PAPI_read does not reset 
the counters. This lets the second value (after adding the counters) to be approximately 
twice as large as the first value (after reading the counters).  

For more details, please refer to PAPI man and documentation, which are installed with the 
product in /usr/share directory. 

6.1.3 Collecting FLOP Counts on Sandy Bridge Processors 
Floating Point OPerations (FLOP) performance events are very machine type sensitive. The 
focus here will be the Sandy Bridge processor. Here are some general insights: 

1. Users think in terms of how many computing operations are done as a count of many 
numbers are added, subtracted, compared, multiplied or divided. 

2. Hardware engineers think in terms of how many instructions are done that add, 
subtract, compare, multiply or divide. 

Three types of operations are provided on these machines: 
1. Scalar – One operand per register 
2. Packed in 128-bit Register – 4 single precision numbers or 2 double precision numbers 
3. Packed in 256-bit Register – 8 single precision numbers or 4 double precision numbers 

The FLOP performance events collected by PAPI are influenced by these three types of 
operations. The performance events count one for each instruction regardless of the number 
of operations done. To compensate for this PAPI has defined several presets that compute 
the user expected number of FLOPs by collecting several performance events and 
multiplying each one by the proper constant. The PAPI Wiki has a very interesting page 
that goes into great detail on this topic: 
http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops  

http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops


 

 Chapter 6. Analyzing Application Performance 47 

The PAPI Floating Point Preset Events are as below: 
 

PRESET Event Description 

PAPI_FP_INS  Count of Scalar Operations 

PAPI_FP_OPS  same as above 

PAPI_SP_OPS  Count of all Single Precision Operations 

PAPI_DP_OPS  Count of all Double Precision Operations 

PAPI_VEC_SP  Count of all Single Precision Vector Operations 

PAPI_VEC_DP  Count of all Double Precision Vector Operations 

The following table is from the website. The table shows how single and double precision 
operand operations are computed for total operations and for vector operations from the 
raw event counts. 
 

PRESET Event Definition 

PAPI_FP_INS  SSE_SCALAR_DOUBLE + SSE_FP_SCALAR_SINGLE 

PAPI_FP_OPS  same as above 

PAPI_SP_OPS  FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE + 
4*(FP_COMP_OPS_EXE:SSE_PACKED_SINGLE) + 
8*(SIMD_FP_256:PACKED_SINGLE) 

PAPI_DP_OPS  FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE + 
2*(FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE) + 
4*(SIMD_FP_256:PACKED_DOUBLE) 

PAPI_VEC_SP  4*(FP_COMP_OPS_EXE:SSE_PACKED_SINGLE) + 
8*(SIMD_FP_256:PACKED_SINGLE) 

PAPI_VEC_DP  2*(FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE) + 
4*(SIMD_FP_256:PACKED_DOUBLE)) 

 



 

48 bullx DE User's Guide 

6.2 Bull Performance Monitor (bpmon) 
The Bull Performance Monitor tool (bpmon) is a Linux command line single node 
performance monitoring tool, which uses the PAPI interface to access the hardware 
performance events (counters) of most processors. It is possible to monitor a single thread 
or the entire system with bpmon.  

The set of events that can be measured depends on the underlying processor. In general, 
bpmon gives access to all processor-specific performance events. 

bpmon can monitor the performance of the application or  the node(s). Command 
execution performance can be monitored by bpmon.  For example, the command below 
gives the following output. 

bpmon Syntax 

bpmon –e 
INSTRUCTIONS_RETIRED,LLC_MISSES,MEM_LOAD_RETIRED:L3_MISS,MEM_UNCORE_RE
TIRED:LOCAL_DRAM,MEM_UNCORE_RETIRED:REMOTE_DRAM 
/opt/hpctk/test_cases/llclat -S -l 4 -i 256 -r 200 -o r 

Output  

Run a single copy of the test on the current thread 
Started Timing Reads 
Command is <Reads> with Range <200 MB> and Stride <256 B> with Average Time 
<63.533 ns> 
 
Elapsed Time of Run of Current Thread is 37.880739086 
 
+-------------------------------------------------------------+ 
| BPMON Single Thread Event Results  | 
+-------------------------------------------------------------+ 
Event Description Event Count 
INSTRUCTIONS_RETIRED  10807933019 
LLC_MISSES    537361852 
MEM_LOAD_RETIRED:L3_MISS    536834525 
MEM_UNCORE_RETIRED:LOCAL_DRAM    536834304 
MEM_UNCORE_RETIRED:REMOTE_DRAM           67 
 
Elapsed time: 37.893312 seconds 



 

 Chapter 6. Analyzing Application Performance 49 

6.2.1 bpmon Reporting Mode 
For all, or a subset, of node processors bpmon provides two reporting modes.  

6.2.1.1 Processor Performance Reporting 

Processor performance reporting lists a set(s) of performance events in tables, with one row 
per processor specified and the different performance events in columns. This can be set to 
repeat the reporting at regular intervals, as shown in the example below. 

#  
# Experiment to measure L3 Cache Performance on each Processor without using 
Uncore Events 
#  
# INSTRUCTIONS_RETIRED     measures Total Instructions Executed 
# LLC_MISSES        measures L3 Cache Misses 
# MEM_LOAD_RETIRED:L3_MISS  measures L3 Data Cache Load Misses 
# MEM_UNCORE_RETIRED:LOCAL_DRAM  measures L3 Data Cache Load Misses Satisfied from 
Local DRAM 
# MEM_UNCORE_RETIRED:REMOTE_DRAM measures L3 Data Cache Load Misses Satisfied from 
Remote DRAM 
#  
run-time=30 
event=INSTRUCTIONS_RETIRED,LLC_MISSES,MEM_LOAD_RETIRED:L3_MISS,MEM_UNCORE_RETIRED:
LOCAL_DRAM,MEM_UNCORE_RETIRED:REMOTE_DRAM 
report=event 

A command example with its output is shown below. 

<Run from Terminal 1> ./llclat -l 10 -c 4 
<Run from Terminal 2> sudo bpmon -c 
/opt/bullxde/perftools/bpmon/share/doc/bpmon/examples/l3crw 

Output 

 
Update in: 30 seconds, ctrl-c to exit 
 
+-------------------------------------------------------------+ 
| BPMON CPU Event Results | 
+-------------------------------------------------------------+ 
CPU  INSTRUCTIONS_RETIRE   LLC_MISSES   MEM_LOAD_RETIRED  MEM_UNCORE_RETIRED  MEM_UNCORE_RETIRED 
#                                               :L3_MISS         :LOCAL_DRAM        :REMOTE_DRAM 
0             11874471347   184298321           181306087           86188440            95116786 
1             11864491632   183240206           180310779           83212538            97097821 
2             11856905044   183105309           180369962           83542631            96827232 
3             11856505436   183098942           180344484           83470335            96873988 
4                 3292691        5589                1032                367                 528 
5                  401016        2342                 466                195                 176 
6                  2594262        981                 217                 50                 121 
7                   101785        594                 150                147                   0 
8              11848325273   182436818          179645809           83339429            96306262 
9              11895706265   182414051          179770963           81956916            97813529 
10             11861415833   183430836          180686147           82165023            98520942 
11             11867024890   183864157          181035165           84138310            96896833 
12                       0           0                  0                  0                   0 
13                  254712        2169                 06                138                 203 
14               388438371        5205                664                286                 220 
15                 6051685        2067                933                839                  93 
ALL            95325980242  1465907587          1443473264          668015644          775454734 
 
 
run_time completed. ...bpmon has terminated!! 



 

50 bullx DE User's Guide 

6.2.1.2 Memory Usage Reporting 

The second report type is a Memory Utilization Report built into bpmon. This report shows 
the percentages of memory references made to a different socket from the one where the 
core is executing. This report can also be repeated at a periodic rate. 

A command example with its output is shown below. 

<Run from Terminal 1> ./llclat -l 10 -c 4 
<Run from Terminal 2> sudo bpmon --report memory --run-time 30 

Output 

Update in: 30 seconds, ctrl-c to exit 
+---------------------------------+ 
| BPMON Memory Utilization Report | 
+---------------------------------+ 
   Hyper-    CPU  CPU  Instruction  Memory Read   Local  Remote 
Board  Socket  Core  Thread  CPU  Mhz  Used  Rate (MIPS)  Bandwidth(MBPS)  Loads  Loads 
-------------------------------------------------------------------------------------------- 
0    0    0   0   0  2933.3  100.0%    104     515.72   45.8%  54.2% 
0    0    1   0   1  2933.3  100.0%    104     516.83   46.0%  54.0% 
0    0    2   0   2  2933.3  100.0%    105     521.48   45.4%  54.6% 
0    0    3   0   3  2933.3  100.0%    105     519.10   45.6%  54.4% 
0    1    0   0   4  1600.1  0.2%     47       0.01   20.4%  79.6% 
0    1    1   0   5  1609.1  0.0%     173       0.01   85.9%  14.1% 
0    1    2   0   6  1601.1  0.0%     1       0.00   61.9%  38.1% 
0    1    3   0   7  1600.8  0.0%     514       0.04   -n/a-   -n/a- 
0    0    0   1   8  2933.3  100.0%    104     514.00   45.6%  54.4% 
0    0    1   1   9  2933.3  100.0%    106     522.72   45.4%  54.6% 
0    0    2   1   10 2933.3  100.0%    105     520.98   45.2%  54.8% 
0    0    3   1   11 2933.3  100.0%    104     517.43   45.5%  54.5% 
0    1    0   1   12 1613.7  0.0%       0       0.00   -n/a-  -n/a- 
0    1    1   1   13 1602.7  0.0%     425       0.01   19.0%  81.0% 
0    1    2   1   14 1637.4  0.0%      16       0.00     6.4%  93.6% 
0    1    3   1   15 1601.2  0.0%    1492       0.02    92.9%  7.1% 
-------------------------------------------------------------------------------------------- 
Totals for 16 CPUs :      36332.1 50.0%    3505      4148.37   45.6%  54.4% 
 
 
run_time completed. ...bpmon has terminated!! 

See  The bpmon man page or help file for more information. 

6.2.2 BPMON PAPI CPU Performance Events 
The PAPI mechanism used by bpmon enables the review of both PAPI preset events and 
processor native events.  

PAPI Preset Events 

PAPI preset events are the same for all hardware platforms and are derived by addition or 
subtraction of native events. However, if the platform processor's native events do not 
support the information collection required, then some presets may not exist.  

PAPI preset events offer the safest source of information for users who are not expert on the 
processor's native events. bpmon allows users to generate a list of available PAPI preset 
events, from which the event counts to be used can be chosen. 



 

 Chapter 6. Analyzing Application Performance 51 

PAPI Processor Native Events 

bpmon allows the user to generate a list of the processor's native events supported by PAPI.  
The user can then review the list and choose which ones to use. 

See  Intel64 and IA-32 Architectures Software Developers Manual, Volume 3B: System 
Programming Guide, Part 2, (document order number 253669) for details of performance 
events available for Intel processors. 

6.2.3 BPMON with the Bull Coherent Switch 
The Bull Performance Monitor tool (BPMON) includes the ability to report performance 
monitor events from the Bull Coherent Switch (BCS). The BCS is the Bull hardware that 
interfaces memory traffic between the four mainboard sockets and the next mainboard in 
multi-mainboard bullx supernode systems. These performance events provide an insight into 
the non-uniform memory architecture (NUMA) related behavior of the system. 

The BCS capability is provided by adding a BCS component to the PAPI used with BPMON 
and a BCS driver to provide an interface to the BCS hardware performance monitor. The 
BCS performance monitor can collect counts for up to four BCS events simultaneously. 

Here is an example using the Traffic Identification performance event. Four Incoming Traffic 
events are collected, two for Remote memory and two for Local memory: 

1. BCS_PE_REM_Incoming_Traffic[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=1,NI
DM=0x01] counts the number of CPU reads that are satisfied from a Remote node. 

2. BCS_PE_REM_Incoming_Traffic[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NI
D=1,NIDM=0x01] counts the number of CPU writes that are satisfied from a Remote 
node. 

3. BCS_PE_LOM_Incoming_Traffic[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0,NI
DM=0x18] counts the number of CPU reads that are satisfied from the Local node. 

4. BCS_PE_LOM_Incoming_Traffic[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NI
D=0,NIDM=0x18] counts the number of CPU writes that are satisfied from the Local 
node. 

Command example 

bpmon -e  
BCS_PE_REM_Incoming_Traffic[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=1,NIDM=0x01], 
BCS_PE_REM_Incoming_Traffic[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=1,NIDM=0x01], 
BCS_PE_LOM_Incoming_Traffic[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0,NIDM=0x18], 
BCS_PE_LOM_Incoming_Traffic[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0,NIDM=0x18]  
./llclat -r 200 -l 1 -o r -S 

./llclat -r 200 -l 1 -o r -S is the command being measured. This test generates 128M L3 
Cache Read Misses. Only this workload must run on the system under test, so that the 
measurement results can be related to the workload, as BCS events cannot be limited to a 
specific process in the way that the CPU events can. 

In this example, REM Incoming Traffic from one BCS should be equal to the LOM Incoming 
Traffic from another BCS.  



 

52 bullx DE User's Guide 

The command above gives the following output: 

+-------------------------------------------------------------+ 
| BPMON Single Thread Event Results | 
+-------------------------------------------------------------+ 
Event Description  Event Count 
BCS_PE_REM_Incoming_Traffic  448530917 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=1,NIDM=0x01] 
BCS_PE_REM_Incoming_Traffic  483451 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=1,NIDM=0x01] 
BCS_PE_LOM_Incoming_Traffic  448466650 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0,NIDM=0x18] 
BCS_PE_LOM_Incoming_Traffic  476911 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0,NIDM=0x18] 
 
Elapsed time: 76.024967 seconds 



 

 Chapter 6. Analyzing Application Performance 53 

6.3 Open|SpeedShop 
This section describes the Open|SpeedShop performance tool.  

6.3.1 Open|SpeedShop Overview 
Open|SpeedShop is an open source multi-platform Linux performance tool, which is 
initially targeted to support performance analysis of applications running on both single 
node and large scale IA64, IA32, EM64T, and AMD64 platforms. 

Open|SpeedShop is explicitly designed with usability in mind and is for application 
developers and computer scientists. The base functionality includes: 

• Sampling Experiments  
• Support for Callstack Analysis  
• Hardware Performance Counters  
• MPI Profiling and Tracing  
• I/O Profiling and Tracing  
• Floating Point Exception Analysis  

In addition, Open|SpeedShop is designed to be modular and extensible. It supports 
several levels of plug-ins which allow users to add their own performance experiments. 

6.3.2 Open|SpeedShop Usage 
Using Open|SpeedShop consists in loading a module file, which will set the different paths 
for binaries and libraries and some environment variables required for a proper usage. 

The Open|SpeedShop package provides two module files:  

• openspeedshop/<version>_bullxmpi  
This module file is to be loaded to use Open|SpeedShop with applications compiled 
with bullxMPI or any OpenMPI based MPI implementation. 

• openspeedshop/<version>_intelmpi  
This module file is to be loaded to use Open|SpeedShop with applications compiled 
with Intel MPI. 

This integrated version of Open|SpeedShop has been configured to use the offline mode of 
operation which links the performance data collection modules with your application and 
collects the performance data you specify. 



 

54 bullx DE User's Guide 

6.3.3 More Information 
See the documentation available from http://www.openspeedshop.org for more details on 
using Open|SpeedShop. 

Convenience commands are provided as a very simple syntax and an easier way to invoke 
the offline functionality: 

http://www.openspeedshop.org/wp/wp-
content/uploads/2013/03/OSSQuickStartGuide2012.pdf 

Man pages are available for the Open|SpeedShop invocation command openss and 
every convenience script.  

Extensive information about how to use the Open|SpeedShop experiments and how to 
view the performance information in informative ways is provided here: 

http://www.openspeedshop.org/wp/wp-
content/uploads/2013/04/OpenSpeedShop_202_User_Manual_v13.pdf 

 

http://www.openspeedshop.org/
http://www.openspeedshop.org/wp/wp-content/uploads/2013/03/OSSQuickStartGuide2012.pdf
http://www.openspeedshop.org/wp/wp-content/uploads/2013/03/OSSQuickStartGuide2012.pdf
http://www.openspeedshop.org/wp/wp-content/uploads/2013/04/OpenSpeedShop_202_User_Manual_v13.pdf
http://www.openspeedshop.org/wp/wp-content/uploads/2013/04/OpenSpeedShop_202_User_Manual_v13.pdf


 

 Chapter 6. Analyzing Application Performance 55 

6.4 HPCToolkit 
HPCToolkit provides a set of profiling tools to help improve the performance of the system. 
These tools perform profiling operations on executables and display information in a user-
friendly way. 

An important advantage of HPCToolkit over other profiling tools is that it does not require 
the use of compile-time profiling options or re-linking of the executable. 

Note  In this chapter, the term 'executable' refers to a Linux program file, in ELF (Executable and 
Linking Format) format.    

HPCToolkit is designed to: 

• Work at binary level to ensure language independence  
This enables HPCToolkit to support the measurement and analysis of multi-lingual 
codes using external binary-only libraries.  

• Profile instead of adding code instrumentation  
Sample-based profiling is less intrusive than code instrumentation, and uses a modest 
data volume.  

• Collect and correlate multiple performance metrics 
Typically, performance problems cannot be diagnosed using only one type of event.  

• Compute derived metrics to help analysis 
Derived metrics, such as the bandwidth used for the memory, often provide insights 
that will indicate where optimization benefits can be achieved.  

• Attribute costs very precisely 
HPCToolkit is unique in its ability to associate measurements in the context of dynamic 
calls, loops, and inlined code. 

6.4.1 HPCToolkit Workflow 
The HPCToolkit design principles led to the development of a general methodology, 
resulting in a workflow that is organized around four different capabilities:  

• Measurement of performance metrics during the execution of an application 

• Analysis of application binaries to reveal the program structure 

• Correlation of dynamic performance metrics with the structure of the source code  

• Presentation of performance metrics and associated source code 



 

56 bullx DE User's Guide 

 

Figure 6-1. HPCToolkit Workflow 

As shown in the workflow diagram above, firstly, one compiles and links the application 
for a production run, using full optimization. Then, the application is launched with the 
hpcrun measurement tool; this uses statistical sampling to produce a performance profile. 
Thirdly, hpcstruct is invoked, this tool analyzes the application binaries to recover 
information about files, functions, loops, and inlined code. Fourthly, hpcprof is used to 
combine performance measurements with information about the program structure to 
produce a performance database. Finally, it is possible to examine the performance 
database with an interactive viewer, called hpcviewer.  

6.4.2 HPCToolkit Tools 
The tools included in the HPCToolkit are: 

6.4.2.1 hpcrun 

hpcrun uses event-based sampling to measure program performance. Sample events 
correspond to periodic interrupts induced by an interval timer, or overflow of hardware 
performance counters, measuring events such as cycles, instructions executed, cache 
misses, and memory bus transactions. During an interrupt, hpcrun attributes samples to 
calling contexts to form call path profiles. To accurately measure code from 'black box' 
vendor compilers, hpcrun uses on-the-fly binary analysis to enable stack unwinding of fully 
optimized code without compiler support, even code that lacks frame pointers and uses 
optimizations such as tail calls. hpcrun stores sample counts and their associated calling 
contexts in a calling context tree (CCT).  

hpcrun-flat, the flat-view version of hpcrun, measures the execution of an executable by a 
statistical sampling of the hardware performance counters to create flat profiles. A flat 
profile is an IP histogram, where IP is the instruction pointer. 



 

 Chapter 6. Analyzing Application Performance 57 

6.4.2.2 hpcstruct  

hpcstruct analyzes the application binary to determine its static program structure. Its goal 
is to recover information about procedures, loop nests, and inlined code. For each 
procedure in the binary, hpcstruct parses its machine code, identifies branch instructions, 
builds a control flow graph, and then uses interval analysis to identify loop nests within the 
control flow. It combines this information with compiler generated line map information in a 
way that allows HPCToolkit to correlate the samples associated with machine instructions to 
the program’s procedures and loops. This correlation is possible even in the presence of 
optimizations such as inlining and loop transformations such as fusion, and compiler-
generated loops from scalarization of Fortran 90 array operations or array copies induced 
by Fortran 90's calling conventions.  

6.4.2.3 hpcprof  

hpcprof correlates the raw profiling measurements from hpcrun with the source code 
abstractions produced by hpcstruct.  hpcprof generates high level metrics in the form of a 
performance database called the Experiment database, which uses the Experiment XML 
format for use with hpcviewer.   

hpcprof-flat is the flat-view version of hpcprof and correlates measurements from hpcrun-flat 
with the program structure produced by hpcstruct. 

hpcproftt correlates flat profile metrics with either source code structure or object code and 
generates textual output suitable for a terminal.  hpcproftt also generates textual dumps of 
profile files. 

hpcprof-mpi correlates the call path profiling metrics (in parallel) produced by hpcrun with 
the source code structure created by hpcstruct. It produces an Experiment database for use 
with the hpcviewer or hpctraceviewer tool. hpcprof-mpi is especially designed for 
analyzing and attributing measurements from large-scale executions. 

6.4.2.4 hpcviewer  

hpcviewer presents the Experiment database produced by hpcprof, hpcprof-flat or hpcprof-
mpi so that the user can quickly and easily view the performance databases generated. 



 

58 bullx DE User's Guide 

6.4.2.5 Display Counters 

The hpcrun tool uses the hardware counters as parameters. To know which counters are 
available for your configuration, use the papi_avail command.  The hpcrun and hpcrun-flat 
tools will also give this information. 

papi_avail 

Available events and hardware information. 
------------------------------------------------------------------ 
Vendor string and code  : GenuineIntel (1) 
Model string and code   : 32 (1) 
CPU Revision : 0.000000 
CPU Megahertz: 1600.000122 
CPU's in this Node : 6 
Nodes in this System: 1 
Total CPU's  : 6 
Number Hardware Counters : 12 
Max Multiplex Counters   : 32 
------------------------------------------------------------------ 
The following correspond to fields in the PAPI_event_info_t structure.  
Name    Code   Avail  Deriv Description (Note)  
PAPI_TOT_CYC 0x8000003b Yes  No  Total cycles 
PAPI_L1_DCM0 x80000000 Yes  No  Level1 data cache  misses 
PAPI_L1_ICM0 x80000001 Yes  No  Level 1  instruction cache misses 
PAPI_L2_DCM0 x80000002 Yes  Yes Level 2 data cache misses 
... 
PAPI_FSQ_INS 0x80000064 No  No Floating point square root instructions 
PAPI_FNV_INS 0x80000065 No  No Floating point inverse instructions 
PAPI_FP_OPS 0x80000066 Yes  No Floating point operations 
---------------------------------------------------------------------- 
Of 103 possible events, 60 are available, of which 17 are derived. 

The following counters are particularly interesting: PAPI_TOT_CYC (number of CPU cycles) 
and PAPI_FP_OPS (number of floating point operations).  

See  For more information on the display counters, use the papi_avail -d command. 

6.4.3 More information about HPCToolkit 
  

See • The HPCToolkit web at http://www.hpctoolkit.org  for more information regarding 
HPCToolkit.  

• The HPCToolkit User's Manual, at http://hpctoolkit.org/manual/HPCToolkit-users-
manual.pdf for more detailed information, including Quick Start, FAQ and 
Troubleshooting HPCToolkit. 

 

http://www.hpctoolkit.org/
http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf


 

 Chapter 6. Analyzing Application Performance 59 

6.5 Bull-Enhanced HPCToolkit 
Bull-Enhanced HPCToolkit is an application performance profiling tool for HPC users. It is 
based on the current HPCToolkit open-source product, which was designed and built by 
Rice University, TX, USA. The Bull-Enhanced HPCToolkit provides added value for HPC 
users needing profile based performance analysis in order to optimize their running 
software applications. 

See  Section 6.4 HPCToolkit for more information about the HPCToolkit. 

The Bull-Enhanced HPC Toolkit contains three main components: 

1. History Component - see section 6.5.1 

2. Viewing Component - see section 6.5.2 

3. HPCToolkit Wrappers- see section 6.5.3 

6.5.1 History Component 
The History Component provides a means to store information related to a test run in a 
repository. This facility allows the user to keep a history of test runs so that they can be 
enhanced with added value, viewed, or compared at a later time. This component consists 
of the following parts:  

• History Repository 

• History Repository Environment Variables 

• Passport Library 

• Passport Manager Application 

6.5.1.1 History Repository 

The History Repository is a database whose entries are code passports from many different 
test runs. Each execution of the user's program, which may occur across multiple nodes, 
results in one code passport in the History Repository. 

Data in the History Repository is stored in a file structure which is grouped first by project 
and then by code passports within a project. A code passport contains all of the results 
from running a single test including environment information such as compiler version, 
compilation platform, surrounding software distributions; program structure information; 
and performance information, including raw performance profiles and performance 
databases. 

A repository name represents a set of data within a repository. This set may be a single 
file, many files, or even all of the files in the repository. The fields in a repository name 
support glob style pattern matching to provide a friendly way to specify the desired set of 
repository files. 



 

60 bullx DE User's Guide 

History Repository naming convention 

<repo name> :: <project>:<code passport>:<test tool>:<data origin>:<file path>  

<project> :: string  
identifies the user or group running test provided by user when bhpcstart is run 

<code passport> :: <simple passport>.yyyymmdd.hhmmss  
timestamp added when passport created 

<simple passport> :: string 
identifies application and/or test being run provided by user when bhpcstart is run 

<test tool> :: string 
name of tool that generated the test results bhpcstruct, bhpcrun, bhpcprof, bhpcprof-mpi 

<data origin> :: <system>.<rank> 

<system> :: string 
system generating test results 

<rank> :: string 
mpi rank of process generating test results not present if not an mpi job 

<file path> :: string 
file or directory pathname relative to <data_origin> often just a simple file name 

<pathname> :: string 
path to a file outside of the repository that may be absolute or relative 

6.5.1.2 History Repository Environment Variables 

The Bull HPCToolkit extension uses an environment variable to define the location of the 
History Repository. The environment variable BHPCTK_REPO_ROOT must be set to the path 
name of the repository root. In this release it is a requirement that the repository root path 
be locally accessible from all nodes used in the test run. 

The environment variable allows multiple repositories on the same system; it also allows 
multiple users to share the same repository. 

BHPCTK_REPO_ROOT is used by the passport library to locate the History Repository when 
applications that use it are run. 

6.5.1.3 Passport Library 

This library provides an API to manage the History Repository and the information found in 
the code passports stored within the repository. The library is responsible for reading the 
environment variable BHPCTK_REPO_ROOT to find out where the repository is located.  

6.5.1.4 Passport Manager Application 

This application is a utility that can be used to access the data in a history repository. Data 
in the history repository is stored in a file structure which is grouped first by project and 
then by code passports within a project. A code passport contains all of the results from 
running a single test. 

The Passport Manager tools are accessed with the command bhpcpm. 



 

 Chapter 6. Analyzing Application Performance 61 

Usage  

bhpcpm ACTION <repository name> [OPTION [<pathname>]] 

A required ACTION field is used to specify the desired function. 
An optional OPTION field is used along with the ACTION to achieve the desired result. 

Note  Both fields can be entered with a '-' and a single letter or a '--' and a word. 
An asterisk '*' is a wild card used for all occurrences of an item. 

To display the help information for the Passport Manager Application, enter: 

bhpcpm -h  

or  

bhpcpm –-help 

6.5.2 Viewing Component 
The enhanced Bull HPCToolkit viewer, bhpcveiwer adds new features to the Rice University 
GUI based hpcviewer, which currently displays the contents of the performance database. 

New bhpcveiwer features include: 

• Display of the History Repository database 
This provides a graphic display of all the files and directories in the history repository 
database. 

• Context menu items to perform operations on tree objects 
This allows the user to select one or more tree objects and perform some operation on 
the objects selected.  The kinds of operations to be supported include: 
− Opening files to see contents,  
− Loading an experiment database into the hpcviewer perspective 
− Comparing the content of two selected files in a side by side display that 

highlights differences,  
− Comparing all objects in two selected directories to provide a list of the files in 

those directories that are different, with the ability to see each file's differences by 
opening one of the files in that list., 

− Import and Export tar files 
− Delete the selected projects and/or code passports 
− Merge Application files and System files 

The objective of the merge utility is to create one application or system file for 
each bhpcrun/<system_name>.<rank#>/application or system file with the same 
content.  Files with the same content will be merged into one file and header 
information will be added to the merged files to track which process ranks contain 
the same content. 

• Preference page to control the History Repository display 
This provides controls that affect the History Repository Explorer View. 

• Preference page to control the Grouping Options for the new views 
This provides controls that affect the Grouped Metrics View and the Raw Metrics View. 



 

62 bullx DE User's Guide 

• A Group Metrics view 
The idea behind creating the grouped metrics view is that, in any large run some of 
the processes will behave differently than other processes.  The approach is to 
separate the processes into groups of processes which generated similar behavior.  
The analyst can decide that one group is running correctly and another running 
incorrectly.  After doing the grouping the user will have a few sets of processes that 
behaved differently from one another.  This view only needs to present one set of data 
for each group and the analyst only needs to compare the performance differences 
between the groups and not all the processes. 

• A Raw Metrics view 
This view shows the raw metric values for all of the processes at one program scope. 

• Additional Grouping Features 
The grouping tool features include: 
− Algorithm to provide an initial optimum number of groups 

The grouping mechanism as a default has an algorithm that chooses the optimum 
number of groups. 
Or the user may specify the number of groups. 

− Automatic hotspot detection 
This helps the analyst focus on the program scopes that are of the most value to 
analyze and highlights them using different colors that may be chosen by the user. 

− Grouping properties view. 
The grouping properties are the results of the grouping tool and principally show 
the processes that are part of each group. 

• Updates to take advantage of information in the performance database 

Syntax 

To run the enhanced Bull HPCToolkit viewer application, use the bhpcviewer command. 

bhpcviewer 

See  The bhpcviewer application Help menu and then Bull Extensions Manual for more 
information about the bhpcviewer. 



 

 Chapter 6. Analyzing Application Performance 63 

 

Figure 6-2. bhpcviewer - Bull Extensions Manual page 

6.5.3 HPCToolkit Wrappers 
Wrapper commands or scripts primary purpose is to run another command or script. They 
provide pre- and post-processing as well as support for configuration control of the 
arguments of both the wrapper and the script it runs. Often, the input and output files for 
the wrappers are obtained from or written to the History Repository. 

The bhpcstruct, bhpcrun, bhpcprof and bhpcprof-mpi wrappers can be invoked as CLIs 
along with bhpcstart, bhpcstop and bhpcclean. 

Command line help 

Each of Bull-Enhanced HPCToolkit command-line wrappers will generate a help message 
summarizing the tool’s usage, arguments and options.  

To display the help information for the wrappers, enter: 

<wrapper_name> -h  

or  

<wrapper_name> –-help  

6.5.3.1 Start Component: bhpcstart 

When the bhpcstart wrapper is run, it will set the environment used by a test case. A test 
case consists of running several scripts, each of which collects some of the data related to 
the test. When the test is finished the bhpcstop script should be run. 
This wrapper can be used to create a new code passport or to set an existing code 
passport to be the current one used by other scripts. 



 

64 bullx DE User's Guide 

• Creating a new one is accomplished by providing a project name and a simple code 
passport name (one without a date/time stamp). 

• Setting an existing code passport to be the current is done by providing the project 
name and the full code passport name (including data/time stamp). 

Once the bhpcstart script is run, all other scripts that reference the current project and code 
passport only require the project name of the repository name. 

6.5.3.2 Stop Component: bhpcstop 

When the bhpcstop wrapper is run, it will clear the current code passport name for the 
input project to stop future scripts from putting more data into this code passport. 

6.5.3.3 Clean Component: bhpcclean 

When the bhpcclean wrapper is run, it will remove the hpcrun metrics data collected from 
a previous run of the bhpcrun script.  A user may wish to do this after they create a code 
passport and then run the bhpcrun script, if he finds that the bhpcrun used incorrect 
parameters or that the wrong versions of software were installed on some of the systems.   

A user must run this script before they will be allowed to rerun bhpcrun.  This is necessary 
because another run of bhpcrun when there is already data collected will cause the test 
case to contain invalid data.  To be able to present consistent data, all of the information 
must have come from the same test run. 

6.5.3.4 Compilation Component: bhpcstruct 

This component is a wrapper around the HPCToolkit hpcstruct component.  
For MPI applications, bhpcstruct must be installed on all possible target nodes where the 
test will be executed. 

The bhpcstruct wrapper performs these actions: 

• Collect special metrics from the program structure to create the program summary 

• Execute the hpcstruct component to create the program structure 

• Collect information to create the program environment 

• Call the Passport Library to write program structure metrics and environment 
information to the specified code passport in the designated History Repository 
location. 

− The scope tree produced by hpcstruct 
<project>.<code passport>.bhpcstruct.<system>.<test case name>.hpcstruct 

− The executable of the test case 
<project>.<code passport>.bhpcstruct.<system>.exec.<test case name> 

− Standard Error and Standard Output 
<project>.<code passport>.bhpcstruct.<system>.stdout 
<project>.<code passport>.bhpcstruct.<system>.stderr 



 

 Chapter 6. Analyzing Application Performance 65 

6.5.3.5 Parallel Manager Component: bhpcrun 

This component is a wrapper around the HPCToolkit hpcrun component.  
For MPI applications, bhpcrun must be installed on all possible target nodes where the test 
will be executed. 

bhpcrun must preserve the node name, process name, and MPI rank (for MPI processes) 
used during sample collection to allow tying of abnormal samples back to the node and/or 
process on which they occurred. 

The bhpcrun wrapper performs these actions: 

• Collect environment information for the system we are running on 

• Collect dynamic libraries used by application 

• Execute the hpcrun component to execute a test case 

• Collect and store the performance profile data generated from a single invocation of 
hpcrun on one or more nodes. 

• Call the Passport Library to write the performance profile to the specified code 
passport in the designated History Repository location. 

− The performance profile 
<project>.<code passport>.bhpcrun.<data origin>.<test case name>-xxx.hpcrun 
<project>.<code passport>.bhpcrun.<data origin>.<test case name>-xxx .hpctrace 
<project>.<code passport>.bhpcrun.<data origin>.<test case name>-xxx.log 

− The application executable location 
<project>.<code passport>.bhpcrun.<data origin>.application 

− The dynamic libraries 
<project>.<code passport>.bhpcrun.<data origin>.libraries 

− Standard Error and Standard Output 
<project>.<code passport>.bhpcrun.<data origin>.stdout 
<project>.<code passport>.bhpcrun.<data origin>.stderr 

− Environment information for the system 
<project>.<code passport>.bhpcrun.<data origin>.sys_type 
<project>.<code passport>.bhpcrun.<data origin>.variables 

The user may also provide optional scripts to perform tasks at specified points during the 
execution of the bhpcrun script. The optional prologue script will be executed by bhpcrun 
prior to execution of the hpcrun script, and the optional epilogue script will be executed as 
the last step in the bhpcrun script. The optional data script will be executed just after the 
hpcrun script has completed but prior to the move of the profile data into the History 
Repository, allowing the user to manipulate the profile data prior to its insertion. In 
addition, a maximum run time value can be provided to limit the execution time of the 
bhpcrun test run. 

6.5.3.6 Hotplot Component: bhpcprof 

This component is a wrapper around the HPCToolkit hpcprof component. It provides an 
interface that can be used to add value to a performance database. 

The bhpcprof wrapper performs these actions: 



 

66 bullx DE User's Guide 

• Collect the information from the code passport that would normally be used by hpcprof 
to build a performance database. 

• Optionally call a user-provided command/script to allow the user to modify the set of 
data to be passed to hpcprof. 

• Execute the hpcprof component to build a performance database as an XML file 
intended to be displayed by the GUI viewer. 

• Call the Passport Library to write the performance database created by hpcprof to the 
specified code passport in the designated History Repository location. 

− The performance database and supporting files 
<project>.<code passport>.bhpcprof.<data origin>.perf_db.callpath.xml 
<project>.<code passport>.bhpcprof.<data origin>.perf_db.experiment-1.mdb 
<project>.<code passport>.bhpcprof.<data origin>.perf_db.experiment.mt 
<project>.<code passport>.bhpcprof.<data origin>.perf_db.experiment.xml 

− The performance database source files 
<project>.<code passport>.bhpcprof.<data origin>.perf_db.src.xxx 
<project>.<code passport>.bhpcprof.<data origin>.perf_db.src.usr.xxx 

− Standard Error and Standard Output 
<project>.<code passport>.bhpcprof.<data origin>.stdout 
<project>.<code passport>.bhpcprof.<data origin>.stderr 

6.5.3.7 Hotplot Component: bhpcprof-mpi 

This component is a wrapper around the HPCToolkit hpcprof-mpi component. It provides an 
interface that can be used to add value to a performance database. 

The bhpcprof-mpi wrapper performs these actions: 

• Collect the information from the code passport that would normally be used by 
hpcprof-mpi to build a performance database. 

• Optionally call a user-provided command/script to allow the user to modify the set of 
data to be passed to hpcprof-mpi. 

• Execute the hpcprof-mpi component to build a performance database as an XML file 
intended to be displayed by the GUI viewer. 

• Call the Passport Library to write the performance database created by hpcprof-mpi to 
the specified code passport in the designated History Repository location. 

− The performance database and supporting files 
<project>.<code passport>.bhpcprof-mpi.<data origin>.perf_db.callpath.xml 
<project>.<code passport>.bhpcprof-mpi.<data origin>.perf_db.experiment-1.mdb 
<project>.<code passport>.bhpcprof-mpi.<data origin>.perf_db.experiment.mt 
<project>.<code passport>.bhpcprof-mpi.<data origin>.perf_db.experiment.xml 

− The performance database source files 
<project>.<code passport>.bhpcprof-mpi.<data origin>.perf_db.src.xxx 
<project>.<code passport>.bhpcprof-mpi.<data origin>.perf_db.src.usr.xxx 

− Standard Error and Standard Output 
<project>.<code passport>.bhpcprof-mpi.<data origin>.stdout 
<project>.<code passport>.bhpcprof-mpi.<data origin>.stderr 



 

 Chapter 6. Analyzing Application Performance 67 

6.5.4 Test Case 
Test cases are identified by a project name and code passport name. The project name is 
provided by the user running the test as a way to separate his tests from tests run by people 
on other projects. It will be provided by the user to all of the scripts run as part of the test 
case. 

The code passport name represents a single test run by the user. It is possible to run the 
same test many times which should create many code passports. When the same test is run 
many times, it would be good to be able to recognize that they are all different runs of the 
same test. For this reason, the user provides a string to the start script, which will be used to 
create a unique code passport name to be used for this test case. The unique name is 
created by the passport manager by appending a date/time stamp to the user provided 
string. 

The passport manager will also keep track of the current code passport (string plus 
date/time stamp) being used for each project. This allows scripts run following the 
bhpcstart script to get the code passport name being used for the current test from the 
passport manager so it does not need to be provided by the user to any other scripts run 
for the test case. When the bhpcstop script is run, it will clear the current code passport 
name to stop future scripts from putting more data into this code passport. The user needs 
to create a new code passport (or set an existing one to be current again) before running 
additional scripts. 

6.5.4.1 Test run work flow 

The work flow is similar to the classical Toolkit, however, the input and output files for the 
Toolkit components are obtained from or written to a code passport, as outlined below: 

1. One must initialize the BHPCTK_REPO_ROOT environment variable with the path 
name of the History Repository repository root. 

2. One invokes the start component (bhpcstart) with a project name and a simple or full 
code passport name. A code passport is created if a partial name is entered and the 
last code passport name file is created for the project. 

3. One invokes the compilation component (bhpcstruct), which in turn invokes the classic 
hpcstruct tool to perform binary analysis. bhpcstruct writes the program structure to the 
code passport. 

4. One launches an application with the parallel manager component (bhpcrun), which 
in turn invokes the classic hpcrun tool to execute the binary with statistical sampling. 
bhpcrun collects performance profiles from the one or more nodes on which the binary 
was executed and adds them to the code passport. It also collects environment 
information about the executable on that system. This includes the executables size 
and build date plus the environment variables that were set and list of dynamic 
libraries used by the executable on that node. 

5. One invokes the hotplot component (bhpcprof or bhpcprof-mpi), which in turn invokes 
the classic hpcprof or hpcprof-mpi tool to correlate the performance data with the 
source structure, creating a performance database. This database is then added to the 
code passport.  

6. One invokes the stop component (bhpcstop) with a project name. The last code 
passport name file is deleted for the project. 



 

68 bullx DE User's Guide 

7. A sample bash script test case to run an MPI MpiSpinWheels job 
(/opt/hpctk/test_cases/MpiSpinWheels) is displayed below: 

export BHPCTK_REPO_ROOT=/home/hpctk/pmhistrep 
 
bhpcstart -ndemoproj:MpiSpinWheels 
 
bhpcstruct -ndemoproj -T/opt/hpctk/test_cases/MpiSpinWheels 
 
mpirun --mca btl tcp,self -np 8 -x $BHPCTK_REPO_ROOT -host sulu,bones -
bynode -display-map bhpcrun -ndemoproj -e PAPI_TOT_CYC@1000000 -e 
PAPI_TOT_INS@1000000 -H --trace -T/opt/hpctk/test_cases/MpiSpinWheels 
 
mpirun --mca btl tcp,self -np 1 -host bones -x $BHPCTK_REPO_ROOT -bynode 
-display-map bhpcprof-mpi -ndemoproj 
 
bhpcstop -ndemoproj 

The bhpcviewer Repository Perspective of the code passport 
(MpiSpinWheels.20120713.143757) data created by the above example is displayed 
below. 

 

Figure 6-3. bhpcviewer Repository page 



 

 Chapter 6. Analyzing Application Performance 69 

6.5.5 HPCToolkit Configuration Files 
The enhanced HPCToolkit provides configuration files that are used to control the execution 
of each of the components in the package. Each enhanced HPCToolkit component will use 
a configuration file named xxx.conf (where xxx is the tool name). It will be possible for a 
component's configuration file to appear in one or more of the directories shown below. 
The enhanced HPCToolkit components will look for their configuration files in the following 
directories (in the order shown): 

• Directory /etc/bullhpctk (to provide system wide default values for tools) 

• Directory $HOME/.bullhpctk (to provide login specific values for tools) 

• Directory in $BHPCTK_CONF_DIR environment variable (to run scripts with custom 
configuration files) 

Bull will deliver a sample set of configuration files that can be copied into /etc/bullhpctk to 
provide system-wide default values for the components delivered with the enhanced 
HPCToolkit. 

Configuration files contain labels to identify the argument being specified for the 
component. In some cases this same label, as well as a single char shortcut for the label, 
may be supported as a command line argument to the component. 

For each label found in the configuration file, there is a value. This value specifies what the 
component uses for this argument. As a component processes each of its configuration files 
found in the search path and finds labels, it sets the component's value for this label to the 
value found in the configuration file. Therefore, the values found in files later in the search 
path normally override the earlier ones. 

Configuration files also contain a special label by the name lock. The value for this label is 
a comma separated list of the other labels found in this configuration file. When a 
component encounters this special label it locks the values provided with each of the labels 
in the list. If a label's value has been locked, it prevents the component from replacing it 
with a value found in a later configuration file. 

Most components also support command line arguments, which follow the same rules 
described above for configuration file labels. The values provided on a command line 
argument will replace a configuration file value unless it was locked in one of the 
configuration files. 

The lock directive provides an environment in which administrators can set configuration 
values for specific arguments in the /etc/bullhpctk/xxx.conf files that users cannot override 
(assuming that users have only read access to the config files in /etc). If a directive is found 
that tries to change a locked value, the component prints a warning but continues to run 
using the value set prior to when it was locked. 



 

70 bullx DE User's Guide 

6.5.5.1 Compilation Component Configuration File: bhpcstruct.conf 

The compilation component uses a configuration file named bhpstruct.conf. 

A hypothetical configuration file for this component could look something like this: 

# 
# User login level configuration for bhpcstruct 
# 
name democonf 
hpcargs "-v 2" 
testcase /opt/hpctk/test_cases/MpiSpinWheels 
lock testcase 

6.5.5.2 Parallel Manager Configuration File: bhpcrun.conf 

The parallel manager component uses a configuration file named bhpcrun.conf. 

A hypothetical configuration file for this component could look something like this: 

# 
# User login level configuration for bhpcrun 
# 
name democonf 
events PAPI_TOT_CYC@1000000 PAPI_TOT_INS@1000000  
hpcargs "-v 2" 
testcase /opt/hpctk/test_cases/MpiSpinWheels 
testargs  
maxruntime 01:00:00 

6.5.5.3 HOTPLOT Configuration File bhpcprof.conf 

The hotplot application uses a configuration file named bhpcprof.conf. 

A hypothetical configuration file for this component looks something like this: 

# 
# User login level configuration for bhpcprof 
# 
name democonf 
include /home/hpctk/pmhistrep/<project>/<cpp>/bhpcprof/<data 
origin>.perf_db 
hpcargs "-v 2" 

 

 

 

 

 



 

 Chapter 7. I/O Profiling 71 

Chapter 7. I/O Profiling 
This chapter describes I/O profiling tools. 

7.1 Iotop 
Iotop is a lightweight top-like tool that shows the I/O activity on disk of running processes. 

 

Figure 7-1. I/O activity displayed by Iotop 

Please note that Iotop needs root privileges to run. 
  

See • The Iotop man page for usage information. 

• http://guichaz.free.fr/iotop/ for more details. 

http://guichaz.free.fr/iotop/


 

72 bullx DE User's Guide 

7.2 Darshan 
Darshan is a scalable HPC I/O characterization tool. It is designed to capture an accurate 
picture of application I/O behavior, including properties such as patterns of access within 
files, with minimum overhead. Darshan can be used to investigate and tune the I/O 
behavior of complex HPC applications. In addition, Darshan’s lightweight design makes it 
suitable for full time deployment for workload characterization of large systems. 

7.2.1 Darshan Usage 
Using Darshan consists in loading a module file, which will set the different paths for 
binaries and libraries. Also the user will be reminded to set the DARSHAN_LOGPATH 
variable to the directory the Darshan's log files should be located. 

Darshan instruments applications via either compile time wrappers for static executables or 
dynamic library preloading for dynamic executables.  

The Darshan package provides several module files, described below.  

• The following module files are to be loaded to use Darshan with applications compiled 
with bullx MPI or any OpenMPI based MPI implementation and using GNU compilers: 

− darshan/<version>_bullxmpi_gnu_noinst 
It is intended to be used with dynamically linked binary and prepend the Darshan 
library to the LD_PRELOAD environment variable. 
No recompilation is needed for the user application. 

− darshan/<version>_bullxmpi_gnu_inst  
It is for use with static executables and needs the application to be recompiled 
with provided Darshan wrappers. 

• The following module files are to be loaded to use Darshan with applications compiled 
with bullx MPI or any OpenMPI based MPI implementation and using Intel compilers: 

− darshan/<version>_bullxmpi_intel_noinst 
It is intended to be used with dynamically linked binary and prepend the Darshan 
library to the LD_PRELOAD environment variable. 
No recompilation is needed for the user application. The Intel compilers 
environment, followed by the bullxmpi environment must be loaded before 
loading this module file. Please use the compilervars.sh script provided by Intel to 
load the Intel compilers environment. 

− darshan/<version>_bullxmpi_intel_inst 
It is for use with static executables and needs the application to be recompiled 
with provided Darshan wrappers. 



 

 Chapter 7. I/O Profiling 73 

• The following module files are to be loaded to use Darshan with applications compiled 
with Intel MPI: 

− darshan/<version>_intelmpi_noinst  
It is intended to be used with dynamically linked binary and prepend the Darshan 
library to the LD_PRELOAD environment variable. 
No recompilation is needed for the user application. The Intel compilers 
environment, followed by the Intel MPI environment must be loaded before 
loading this module file. Please use the compilervars.[c]sh script provided by Intel 
to load the Intel compilers environment and mpivars.[c]sh to load the Intel MPI 
environment. 

− darshan/<version>_intelmpi_inst 
It is for use with static executables and needs the application to be recompiled 
with provided Darshan wrappers. 

7.2.2 Darshan log files 
Before using Darshan, the location of the tool generated traces has to be set. This can be 
done by setting the DARSHAN_LOGPATH environment variable to an existing location. 

export DARSHAN_LOGPATH=/path/to/logs/ 

7.2.3 Compiling with Darshan 
To allow trace generation with Darshan, the MPI application has to be compiled by 
replacing the regular MPI compilers with the wrappers provided by the tool. That is, 
depending on the module file loaded: 

With darshan/<version>_bullxmpi_gnu_inst or darshan/<version>_bullxmpi_intel_inst: 

• mpicc.darshan for C source files. 

• mpiCC.darshan or mpicxx for C++ source files. 

• mpif77.darshan for Fortran 77 source files. 

• mpif90.darshan for the Fortran 90 source files. 

With darshan/<version>_intelmpi_inst: 

• mpiicc.darshan for C source files.  

• mpiicpc.darshan for C++ source files.  

Note  The MPI environment must be setup prior to use the Darshan wrappers. 



 

74 bullx DE User's Guide 

7.2.4 Analyzing log files with Darshan utilities 
Each time a Darshan instrumented application is executed, it will generate a single binary 
and portable log file summarizing the I/O activity from that application. This log file is 
generated and placed into the directory pointed by the DARSHAN_LOGPATH environment 
variable. The log is generated with a name in the following format: 

<username>_<binary_name>_<job_ID>_<date>_<unique_ID>_<timing>.darshan.gz 

The Darshan package provides a set of tools to help processing and analyzing the log 
files. 

• darshan-job-summary.pl 
One can generate a graphical summary of the I/O activity for a job by using the 
darshan-job-summary.pl graphical summary tool as in the following example. 

darshan-job-summary.pl carns_my-app_id114525_7-27-58921_19.darshan.gz 

It will generate a multi-page PDF file based on the name of the input file.  

• darshan-parser 
This tool generates a full, human readable dump of all information contained in a log 
file. The following example essentially converts the contents of the log file into a fully 
expanded text file. 

darshan-parser <logfile> > ~/job-characterization.txt 

See  http://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html#_darshan_parser for a 
complete description of darshan-parser results. 

• darshan-convert 
Converts an existing log file to the newest log format. If the output file has a .bz2 
extension, then it will be re-compressed in bz2 format rather than gz format. It also has 
command line options for anonymizing personal data and adding metadata 
annotation to the log header. 

• darshan-diff 
Compares two darshan log files and shows counters that differ. 

• darshan-analyzer 
Walks an entire directory tree of Darshan log files and produces a summary of the 
types of access methods used in those log files. 

• darshan-logutils* 
This is a library rather than an executable, but it provides a C interface for opening 
and parsing Darshan log files. This is the recommended method for writing custom 
utilities, as darshan-logutils provides a relatively stable interface across different 
versions of Darshan and different log formats. 

7.2.5 Darshan Limitations 

darshan/<version>_intelmpi_noinst and darshan/<version>_intelmpi_inst  will not produce 
instrumentation for Fortran executables. They only work with C and C++ executables. 

 

http://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html#_darshan_parser


 

 Chapter 8. Libraries and Other Tools 75 

Chapter 8. Libraries and Other Tools 
This chapter describes Boost libraries and other tools. 

8.1 Boost 
Boost is a collection of high quality C++ libraries intended to be widely useful and usable 
across a broad spectrum of application. Boost libraries are fully compliant with the C++ 
standard library and offer means to manipulate efficiently: 
• threads 
• regular expressions 
• filesystem operations 
• smart pointers 
• strings 
• mathematical graphs 
• any many others 

Boost contains two types of libraries:  

• header-only libraries 
These libraries are fully defined and implemented within C++ header files (hpp files). 
Compiling an application with these libraries consists in indicating the compiler where 
to find Boost header files with the -I compilation option. In the context of bullx DE, 
loading the Boost module will automatically make the Boost header files visible to the 
compiler through the CPATH environment variable.  

• shared or static libraries 
To compile with these libraries, one has to indicate the compiler where to find the 
libraries. In the context of bullx DE, the BOOST_LIB environment variable can be used 
to indicate the Boost libraries as shown in the following example. 

Compiling with Boost shared or static libraries 

g++ source.cpp -L$BOOST_LIB -lboost_xxxx -o executable 

See  http://www.boost.org/ for more details. 

http://www.boost.org/


 

76 bullx DE User's Guide 

8.2 OTF (Open Trace Format) 
OTF is a library used by the tools like Scalasca to generated traces in the OTF format. The 
OTF package also contains additional tools to help processing OTF trace files: 

• otfmerge – converter program of OTF library 

• otfmerge-mpi - MPI version of otfmerge 

• otfaux - append snapshots and statistics to existing OTF traces at given ’break’ time 
stamps  

• vtf2ot f - convert VTF3 trace files to OTF format.  

• otf2vtf - convert OTF trace files to VTF format.  

• otfdump - convert OTF traces or parts of it into a human readable, long version . 

• otf(de)compress - compression program for single OTF files. 

• otf-config - shows parameters of the OTF configuration . 

• otfprofile - generates a profile of a trace in Latex or CSV format.  

• otfshrink - creates a new OTF file that only includes specified processes . 

• otfinfo - program to get basic information of a trace.  
  

See • /opt/bullxde/utils/OTF/share/doc/OTF/otftools.pdf documentation on OTF tool 
usage. 

• www.tu-dresden.de/zih/otf for more details. 

http://www.tu-dresden.de/zih/otf


 

 Chapter 8. Libraries and Other Tools 77 

8.3 Ptools 
Ptools is a collection of tools that help create and manage CPUSETS. 

8.3.1 CPUSETs 
CPUSETs are lightweight objects in the Linux kernel that enable users to partition their 
multiprocessor machine by creating execution areas. A virtualization layer has been added 
so it becomes possible to split a machine in terms of CPUs. 

The main motivation of this patch is to give the Linux kernel full administration capabilities 
concerning CPUs. CPUSETs are rigidly defined, and a process running inside this 
predefined area will not be able to run on other parts of the system. 

This is useful for:  

• Creating sets of CPUs on a system, and binding applications to them. 

• Providing a way of creating sets of CPUs inside a set of CPUs so that a system 
administrator can partition a system among users, and users can further partition their 
partition among their applications.  

Typical Usage of CPUSETS 

• CPU-bound applications: Many applications (as it is often the case for cluster apps) 
used to have a "one process on one processor" policy using sched_setaffinity() to 
define this, but what if we have to run several such apps at the same time?  One can 
do this by creating a CPUSET for each app.  

• Critical applications: processors inside strict areas may not be used by other areas. 
Thus, a critical application may be run inside an area with the knowledge that other 
processes will not use its CPUs. This means that other applications will not be able to 
lower its reactivity. This can be done by creating a CPUSET for the critical application, 
and another for all the other tasks.  

Bull CPUSETS 

CPUSETS are integrated in the standard Linux kernel. However, the Bull kernel includes the 
following additional CPUSET features:  

Migration  
Change on the fly the execution area for a whole set of processes (for example, to 
give more resources to a critical application). When you change the CPU list of a 
CPUSET all the processes that belong to the CPUSET will be migrated to stay inside the 
CPU list, if and as necessary.  

Virtualization  
Translate the masks of CPUs given to sched_setaffinity() so they stay inside the set of 
CPUs. With this mechanism processors are virtualized for the use of sched_setaffinity() 
and /proc information. Thus, any former application using this system call to bind 
processes to processors will work with virtual CPUs without any change. A new file is 
added to each CPUSET, in the CPUSET file system, to allow a CPUSET to be 
virtualized, or not.  



 

78 bullx DE User's Guide 

8.3.2 CPUSETs management tools 
The ptools package provides a set of tools to help create, manage end delete CPUSETs: 

• pcreate and pexec to create a CPUSET. 

• pdestroy to destroy a CPUSET. 

• pls to list the existing CPUSETs. 

• pshell to launch a shell within an environment created with pcreate or pexec. 

• pplace and passign to control the placement of processes on CPUs. 

See  The tools man pages for more details on their usage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Appendix A. Performance Monitoring with BCS Counters 79 

Appendix A.  Performance Monitoring with BCS Counters 
 

The performance monitoring implemented in the BCS chip provides a means for measuring 
system performance and detecting bottlenecks caused by hardware or software. This 
Appendix describes some of the ways that the Performance Monitoring (PM) resources can 
be programmed to obtain some basic measurements. 

A.1 Bull Coherent Switch Architecture 
To be able to create monitoring experiments the user must have some understanding of the 
BCS architecture. The BCS units are: 

• Remote Space Manager (REM) and Local Space Manager (LOM), collectively referred 
to as the Protocol Engine (PE). 

• Link Layer QPI/IOH/XQPI (LLCH, LLIH, and LLXH), collectively referred to as LL; Output 
Buffering blocks to QPI/IOH/XQPI (OBC, OBI, and OBX) are considered to be part of 
the appropriate LL unit for the purposes of Performance Monitoring, collectively 
referred to as OB. 

• Non-coherent Manager Unit (NCMH) 

• Route Through IOH-to-QPI/QPI-to-IOH (ROIC and ROCI), collectively referred to as 
RO. 

Figure A-1 shows a schematic representation of the BCS units with their performance 
monitoring blocks and connections. 

ReM
PMPE0
PMPE1

LoM

PMPE0
PMPE1

ROCI

PMRO0
PMRO1

ROIC

PMRO0
PMRO1

OBX LLX0

PMLL0
PMLL1

LLX1

PMLL0
PMLL1

OBX

LLX2

PMLL0
PMLL1

OBX

LLC3

PMLL0
PMLL1

OBC

LLI1

PMLL0
PMLL1

OBI

LLI0

PMLL0
PMLL1

OBI

LLC1

PMLL0
PMLL1

OBC

LLC2

PMLL0
PMLL1

OBC

OBCLLC0

PMLL0
PMLL1

NCMH

PMCC

PMNC0
PMNC1

 

Figure A-1. BCS Architecture for performance monitoring blocks and connections 



 

80 bullx DE User's Guide 

A.2 Performance Monitoring Architecture 
Performance Monitoring as supported by BPMON and Bull’s PAPI enhancement is 
composed of two parts: 

• event detection 

• event counting 

Event detection logic is placed in all major units. Two events can be decoded per cycle in 
each block. All events are then centralized in the Performance Monitoring Central Counter 
block (PMCC) implemented in the Non Coherent Manager Unit (NCMH). The PMCC 
consists of four counters. 

Event Detection 
Each unit has two blocks containing the Performance Monitoring Event register (PME) which 
can be independently programmed to detect and forward different events. These blocks are 
named PMxx0 and PMxx1 (where xx is the unit identifier), whose events are referred to as 
event0 and event1, respectively. This two block construct allows two similar events in the 
same unit to be selected and sent to the counter blocks, for example a target event such as 
a directory access with a specific state as one event and a reference event of all directory 
read accesses as a second event. 

Event Counting 
All unit event outputs are collected in the central counter block located in the NCMH unit. 
Here the events are selected as inputs to the four counters. Each counter is controlled by a 
Performance Monitoring Resource Control and Status register (PMR). Events from PMxx0 
are hardwired to the event selection for counter0 of each counter pair; events from PMxx1 
are hardwired to the event selection for counter1 of each counter pair. This is important to 
keep in mind if one is trying to combine events from different units into one counter. 



 

 Appendix A. Performance Monitoring with BCS Counters 81 

A.3 Event Types 
This is a general description of event types. Any differences or additions in the units are 
addressed in later sections. 

1. Interface – measure BCS internal traffic from the selected unit to a destination unit. 
Details about message type are not available at this level of measurement. 

2. Buffer Occupation – measurement of buffer occupation at or greater than a specified 
threshold. Used in association with the timer and multiple runs at different thresholds to 
make a histogram of occupation. 

3. Errors – measure double and single ECC errors. 

4. Traffic Identification – measure various events in the life of a transaction based on the 
traffic direction and the transaction type (message class and opcode) dependent upon 
a mask. Incoming and Outgoing directions are with respect to the unit being 
monitored. 

5. Latency – measure latency for selected message sequences, often dependent upon a 
mask. 

PE Event Types 
LoM (Local space Manager) is responsible for ensuring coherency for local addresses. 
It behaves as a Home Agent on XQPI representing the Home Agents of all the other 
modules and as a Caching Agent on QPI representing the Caching Agents of the local 
module. 

ReM (Remote space Manager) is responsible for ensuring coherency on remote addresses. 
It behaves as a Home Agent on QPI representing the Home Agents of all the other modules 
and as a Caching Agent on XQPI representing the Caching Agents of the local module. 

Protocol Engine (PE) event types are monitored in the PE units, ReM and LoM, by setting 
fields in the PMPE0 or PMPE1 PME registers in the selected unit. Each unit consists of four 
instances which must have identical settings for their PME registers. For example, if you 
have chosen to monitor an event using the PMPE0_PME register in ReM, all four 
PMPE0_PME registers in ReM must have the same value. In the cases where only one 
instance event is to be used, such as measuring average latency, the event registers should 
still be set up the same for all instances, with the counter control registers selecting only one 
instance. 

The following event types can be monitored in the PE. Descriptive information is in addition 
to the general description above. 

1. Interface – measure traffic from a PE block to OB. Can choose either West (Caching 
Agent or CA) side or East (Home Agent or HA) side. 

2. Buffer Occupation – the size of the buffer is in parentheses. 

3. Errors – measure directory, Tracker, and Virtual Output FIFO ECC errors. 



 

82 bullx DE User's Guide 

4. Traffic Identification – four choices for traffic direction: 

a. Incoming Traffic – incoming traffic can be identified by a mask-enabled Request 
or Home Node ID (RHNID) in addition to Transaction Type. 

b. Outgoing Traffic – outgoing traffic can be identified by a mask-enabled 
Destination Node ID in addition to Transaction Type. 

c. Tracker Output Traffic – measure responses during Tracker phases Snoop Snoopy 
Nodes, Snoop Directory Nodes, and Read Memory for cache-to-cache transfers. 

d. Lookup Response Traffic – directory status during Read Access of IPT (In Process 
Table) or SRAM directories. Shared and Exclusive State events can act as 
indicators of program affinity. 

5. Transaction Latency – measure latency for Read, Write, or Snoop transactions based 
on the opcode dependent upon an opcode mask. 

6. Starvation – measure starvation starts, duration, or number of starved transactions 
versus a threshold. 

7. Retry – measure initial retries, all retries, and all transactions that enter the Retry 
Detection stage; select between Short (early detection) or Long (detection at end of 
pipeline) and one/some/all Retry types. 

8. Directory Access – measure Read and Update accesses to the SRAM directory, or to 
both IPT and SRAM. In ReM, the directories comprise the ILD; in LoM, the directories 
comprise the ELD. 

9. Directory Levels – measurement of level occupation at or greater than a specific 
threshold. Used in association with the timer and multiple runs at different thresholds to 
make a histogram of occupation. 

10. Twin Lines – measure different types of SRAM Directory Look-ups related to entries that 
contain a Twin Line address, defined as a pair of addresses that differ by one specific 
address bit (allows for sharing of the directory entry).  

A depiction of the 119 bit PMPE_PME register follows. It is shown in 32-bit packets as that 
is how it is read and written in Configuration Access mode using the BCS CSR. Field 
description details can be found in the PMPE Event Configuration Register Description. 



 

 Appendix A. Performance Monitoring with BCS Counters 83 

31 30 29 20 19 17 16 12 11 10 9 7 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 No Event
x x x x x x 1 Directory SRAM single ECC error
x x x x x 1 x Directory SRAM double ECC error
x x x x 1 x x Directory LOT single ECC error
x x x 1 x x x Directory DCT single ECC error
x x 1 x x x x Directory DLIT single ECC error
x 1 x x x x x Tracker single ECC error
1 x x x x x x Virtual Output FIFO single ECC error

0 0 0 No Event
0 0 1 Lookup to Directory SRAM
0 1 0 Lookup miss
0 1 1 Lookup hit with one of the twin lines in non-I state
1 0 0 Lookup hit with both of the twin lines in non-I state

0 0 No Event
0 1 The number of active levels is greater than threshold
1 0 The number of active levels is equal to the threshold

0 0 0 No Event
0 0 1 Directory SRAM update access 
0 1 0 Directory SRAM read access
0 1 1 Directory IPT or SRAM update access
1 0 0 Directory IPT or SRAM read access
1 0 1 Transaction elected to access the pipeline

0 0 0 0 0 0 0 0 0 0 No Event

x x x x x x x x x 1 Undef Undef
x x x x x x x x 1 x RspI DataC_I
x x x x x x x 1 x x RspS DataC_S/F
x x x x x x 1 x x x RspCnflt DataC_E/M
x x x x x 1 x x x x RspIWb
x x x x 1 x x x x x RspSWb
x x x 1 x x x x x x RspFwdI
x x 1 x x x x x x x RspFwdS
x 1 x x x x x x x x RspFwdIWb
1 x x x x x x x x x RspFwdSWb

0 0 snSnp: snoop Snoopy nodes
0 1 dnSnp: snoop Directory nodes
1 0 homeReq: access memory

Twin Lines Error Monitoring
Directory 
Access 

Event Threshold Event

Directory Active Levels
Traffic Identification

Event Event

homeReq

Tracker Output

Response Type ReceivedState

snSnp or dnSnp

 

 

64 63 62 55 54 47 46 42 41 37 36 32
0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 No Event
x x x x 1 Exclusive State
x x x 1 x Shared State and 3 sharers
x x 1 x x Shared State and 2 sharers
x 1 x x x Shared State and 1 sharers
1 x x x x Invalid State

1 1 1 1 1 Specific NID
0 0 0 0 0 All NID's

x x x x 1 0 0 0 0 1 CA (for default configuration)
x x x 0 0 0 0 0 1 1 IOH (for default configuration)
x x x 1 0 0 0 0 1 1 Ubox (for default configuration)

1 1 1 1 1 1 1 1 Specific type
0 0 0 0 0 0 0 0 All types

1 1 1 1 1 1 1 1 No Event
0 0 0 0 HOM: Home - Request
0 0 0 1 HOM: Home - Response & Writes (commands only)
0 0 1 0 NDR: Non Data Response
0 0 1 1 SNP: Snoop
0 1 0 0 NCS: Non Coherent Standard
1 1 0 0 NCB: Non Coherent Bypass
1 1 1 0 DRS: Data Response
1 1 1 1 SPC: Special Control

0 0 Incoming
0 1 Outgoing
1 0 Tracker Output
1 1 Lookup Response

Traffic Identification
Lookup Response

Direction NID Mask
Lookup Directory 

Status

Node ID:
DNID outgoing;

RHNID incoming

Incoming/Outgoing
Transaction Type:

(msgclass+opcode)
required for all Traffic ID Events

Transaction Type Mask:
(msgclass+opcode)

required for all Traffic ID Events

 

 



 

84 bullx DE User's Guide 

95 92 91 90 89 87 86 78 77 75 74 73 67 66 65 64
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 No Event
0 1 Retry has occurred
1 0 New retry has occurred
1 1 Valid transaction seen in retry detection

0 x x x x x x 1 Impossible lookup
0 x x x x x 1 x Atomicity: same/twin address already in pipeline

1 x x x x x x 1 back invalidate refused
1 x x x x x 1 x single ECC errors
1 x x x x 1 x x full conflict 
1 x x x 1 x x x partial conflict
1 x x 1 x x x x W-TID pool unavailable

0 0 0 ReadReq 1 x 1 x x x x x E-TID pool unavailable
0 0 1 Snoop 1 1 x x x x x x Output channel not available 
0 1 0 WSB 0 0 0 No Event
0 1 1 WrReq 0 0 1 Start of new Starvation mechanism 
1 0 0 CmpFwd 0 1 0 Starvation mechanism is active
1 0 1 PtlCnfList 0 1 1 Number of starved transactions at start of mechanism is greater than threshold

0 0 No Event 1 0 0 Number of starved transactions at start of mechanism is equal to threshold
0 1 Number of occupied entries is greater than threshold
1 0 Number of occupied entries is equal to threshold

Buffer Occupation

Short Retry

Starvation Retry
Threshold Event Type EventType

Long Retry

Threshold Event

 

 

118 117 116 115 114 111 110 107 106 105 104 101 100 96 95 94 93 92

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Write Buffer (8) 
0 0 0 1 DCT (256)
0 0 1 0 LOT (256)
0 0 1 1 West TID pool 0 (64)  
0 1 0 0 West TID pool 1 (64)   
0 1 0 1 West TID pool 2 (64)
0 1 1 0 West TID pool 3 (64)
0 1 1 1 Sum of West TID pools (96)
1 0 0 0 East TID pool (64)
1 0 0 1 East NDR Virtual fifo (276)
1 0 1 0 East SNP Virtual fifo (276)
1 0 1 1 West HOM Virtual fifo (276)
1 1 0 0 West SNP Virtual fifo (276)
1 1 0 1 WSB (16)

0 0 No Event
0 0 Read Request 0 1 A packet (=1 flit) has been emitted RT-East to OB
0 1 Write Request 1 0 A packet (=1 flit) has been emitted RT-West to OB
1 0 Snoop 1 1 1 1 Specific opcode

0 0 No Event 0 0 0 0 All opcodes
0 1 The message selected in the "Type" field has been captured
1 0 The response to the "Type" field message has been received (DataC for Read, Cmp for Write, and last Snp for Snoop)

Transaction Latency Buffer OccupationInterface

Event Type Opcode Opcode Mask Event
Buffer Select 

(max size) Threshold

 



 

 Appendix A. Performance Monitoring with BCS Counters 85 

NCMH Event Types 
Non Coherent Manager Unit (NCMH) manages non-coherent transactions through QPI and 
XQPI interfaces. 
NCMH event types are monitored by setting fields in the PMNC0 or PMNC1 PME 
registers. 
The following event types can be monitored in NCMH. Descriptive information is in 
addition to the general description at the beginning of this section. 
1. Interface – measure non-coherent traffic from NC to QPI or XQPI. 
2. Buffer Occupation – measure occupation of QPI or XQPI Tracker buffers. 
3. Error – measure ECC errors in NC register files. 
4. Traffic Identification – two choices for traffic direction, QPI to XQPI and XQPI to QPI. 

Traffic identification can be made using the outgoing mask-enabled updated DNID 
and the incoming mask-enabled RHNID in addition to Transaction Type. 

5. Transaction Latency – measure latency of selected transactions from the QPI or XQPI 
tracker. 

6. Lock Latency – measure latency of Lock transactions. 

A depiction of the 74 bit PMNC_PME register follows. It is shown in 32-bit packets as that 
is how it is read and written in Configuration Access mode using the BCS CSR. Field 
description details can be found in the PMNC Event Configuration Register Description. 

Sel Sel
31 30 29 28 27 26 25 24 17 16 9 8 7 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 No Event
0 1 Number of occupied entries is greater than threshold
1 0 Number of occupied entries is equal to threshold

0 Select CSI Tracker Buffer
1 Select XCSI Tracker Buffer

1 1 1 1 1 1 1 1 Specific type
0 0 0 0 0 0 0 0 All types

0 0 1 0 NDR: Non Data Response
0 1 0 0 NCS: Non Coherent Standard
1 1 0 0 NCB: Non Coherent Bypass
1 1 1 0 DRS: Data Response

0 Select CSI Tracker Buffer
1 Select XCSI Tracker Buffer

0 0 No Event
0 1 Allocation of selected tracker entry has been captured
1 0 Captured tracker entry has been released

0 0 No Event
0 1 Lock message sent
1 0 Unlock message sent

0 0 No Event
x 1 NCCX single ECC error
1 x NCXC single ECC error

Lock 
Latency Buffer Occupation

EventThresholdEventEvent
Transaction Type:

(msgclass+opcode)

Error

Event
Transaction Type Mask:

(msgclass+opcode)

Transaction Latency

 
 

Sel
63 62 58 57 53 52 45 44 37 36 35 34 33 32
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 No Event
x 1 NCCX double ECC error
1 x NCXC double ECC error

0 0 No Event
0 1 A packet has been emitted
1 0 A flit has been emitted
1 1 Lack of credit on a flit waiting to be emitted

0 NCCX to OB
1 NCXC to OB

1 1 1 1 1 1 1 1 Specific type
0 0 0 0 0 0 0 0 All types

1 1 1 1 1 1 1 1 No Event
0 0 1 0 NDR: Non Data Response
0 1 0 0 NCS: Non Coherent Standard
1 1 0 0 NCB: Non Coherent Bypass
1 1 1 0 DRS: Data Response

1 1 1 1 1 Specific ID
0 0 0 0 0 All ID's

Event

Transaction Type:
(msgclass+opcode)

required for Traffic Events

Traffic

Event

Error

Incoming packet 
RHNID

Incoming RHNID 
Mask

Interface
Transaction Type Mask:

(msgclass+opcode)
required for Traffic Events

 

73 72 68 67 64 63

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 Specific ID
0 0 0 0 0 All ID's

0 CSI to XCSI
1 XCSI to CSI

Outgoing DNID Mask

Traffic
Outgoing packet 

DNIDDirection

 



 

86 bullx DE User's Guide 

LL and OB Event Types 
Link Layer (LL) is the interface between QPI/IOH/XQPI and the Protocol Engines and 
Routing Layer of the BCS. Output Buffers (OB) store and route messages from the Protocol 
Engines to the Link Layer. 

LL event types are monitored in the LL units, LLCH, LLIH and LLXH, by setting fields in the 
PMLL0 or PMLL1 PME registers in the selected unit. Each unit consists of multiple instances; 
four in LLCH, two in LLIH, three in LLXH. Unlike the PE units, the LL unit instance need not 
have identical settings for their PME registers as each instance is connected to a specific 
agent. OB Event types are monitored in the appropriate LL unit. 

The following event type can be monitored in LL. Descriptive information is in addition to 
the general description at the beginning of this section. 

Interface – measure OB to LL traffic. 

Below is a depiction of the 33 bit PMLL_PME register. It is shown as a 32-bit packets and a 
1-bit packet as that is how it is read and written in Configuration Access mode using the 
BCS CSR. 

32 31 28 27 25 24 23 22 20 19 10 9 8 7 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 No Event
0 0 No Event 0 0 0 0 0 0 No Event

0 0 0 No Event 0 0 No Event
0 0 1 A packet has been emitted
0 1 0 A packet has been emitted w/ idle latency
0 1 1 A flit has been emitted
1 0 0 Flow control (or lack of credit) on a flit waiting to be emitted

0 1 1 0 1 OB to LL flit0
0 1 1 1 0 OB to LL flit1
0 1 1 1 1 OB to LL flit2
1 0 0 0 0 OB to LL flit3
1 0 0 0 1 OB to LL flit0 and flit1
1 0 0 1 0 OB to LL flit2 and flit3
1 0 0 1 1 OB to LL flit0,1,2,3
1 0 1 0 0 OB to LL flit0,1,2,3; VN0 traffic only

Clock 
Correct

Select Event Event Select Threshold Event Event Event
Interface

Anticipat
ion Buffer Occupation Error Monitoring

 

RO Event Type 
Route Through (RO) units are the direct routing path for messages from the two IOH 
modules to QPI and between the IOH modules. 

RO event type is monitored in the ROIC and ROCI units by setting fields in the PMRO0 or 
PMRO1 PME registers in the selected unit. The following event type can be monitored in 
RO. Descriptive information is in addition to the general description at the beginning of this 
section. 

Interface - measure RO-to-OB traffic or ROIC-to-ROCI traffic. 

Below is a depiction of the 4 bit PMRO_PME register. Field description details can be 
found in the PMRO Event Configuration Register Description. 

3 2 1 0
0 0 0 0

0 0 No Event
0 1 A packet has been emitted
1 0 A flit has been emitted
1 1 Flow control (or lack of credit) on a flit waiting to be emitted

0 0 RO to OB flow0 (2 flits)
0 1 RO to OB flow1 (2 flits)
1 0 RO to OB flow0 and flow1 (4 flits)
1 1 ROIC to ROCI flow0 and flow1 (unused in ROCI)

Select Event
Interface

 



 

 Appendix A. Performance Monitoring with BCS Counters 87 

A.4 Event Counts and Counter Threshold Comparisons 
There are four Performance Monitor Counters comprised of a counter and a data storage 
register, the Performance Monitoring Data register (PMD). Counting is enabled by selecting 
a Counter Enable source, either a Local Enable/Interval Timer, or the counter's partner. It is 
important to note that Local Enable and Interval Timer are controlled by the global registers 
PERFCON and PTCTL and are mutually exclusive, meaning that all counters making this 
selection will receive the same enable source. For example, one cannot choose Local 
Enable for one counter and Interval Timer for another. 

Each PMD can be compared with its own Performance Monitoring Compare register 
(PMC). There are two comparison modes: maximum compare, and compare then update. 
In maximum compare mode, the PMC is loaded with an initial value and a notification 
occurs when the PMD reaches this value. In the compare then update mode, the PMC is 
loaded each time the PMD exceeds the PMC value. 

Each PM Counter is controlled by a Performance Monitoring Resource Control and Status 
register (PMR). The fields to carry out the actions described above are listed below. 

1. unit selection for events or no event - select the units whose events are to be monitored, 
based upon the unit type (PE, LL, RO). 

2. compare mode or no comparison - select maximum compare, compare then update, or 
no comparison mode. 

3. reset source for counter and status - select partner's compare or overflow status, 
partner's event, or nothing as the reset. 

4. source of counter events - select PME event, partner's status, or clock. 

5. count mode - count events or clocks after event. 

6. destination of counter status output - select PERFCON or partner. 

7. counter enable source - local (by PERFCON) or timer, partner's status, or disabled. 

8. reset counter and clear status bits. 

Using Bull’s tools the user has no capability to use the Interval Timer 0r Compare 
mechanisms. 

A depiction of the 32-bit PMR register follows. Field description details can be found in the 
PMR Configuration Register Description. 



 

88 bullx DE User's Guide 

31 30 29 28 20 19 18 17 15 14 12 11 10 9 8 7 5 4 2 1 0
x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 Reset this counter's resources
1 Clear overflow data bit

0 0 0 Counter Disabled
0 0 1 PERFCON/TIMER local count enable 
0 1 0 Counter Partner Status

0 0 0 Status reported in PERFCON 
0 0 1 Status reported to Counter Partner

1 Overflow status
1 Compare status

0 0 Count events
0 1 Count clocks after event

0 0 0 Unit PME register event
0 0 1 Counter Partner Status
0 1 0 Clock

0 0 0 No Reset Source
0 0 1 Counter Partner's status
0 1 0 Counter Partner's incoming event

0 0 Compare Disabled
0 1 Max compare
1 0 Compare and update PMC if new max

0 0 0 0 0 0 0 0 0 No Event

1 x x x x x x x x LOMH 0 LLCH 0 ROIC
x 1 x x x x x x x LOMH 1 LLCH 1 ROCI
x x 1 x x x x x x LOMH 2 LLCH 2
x x x 1 x x x x x LOMH 3 LLCH 3
x x x x 1 x x x x REMH 0 LLIH 0
x x x x x 1 x x x REMH 1 LLIH 1
x x x x x x 1 x x REMH 2 LLXH 0
x x x x x x x 1 x REMH 3 LLXH 1
x x x x x x x x 1 NCMH LLXH 2

0 0 PE
0 1 LL
1 0 RO

Unit 
Type 

Source

Counter 
Enable 
Source

Counter 
Status

Count 
Mode

Counter 
Event 

Source

Counter 
Status 
Output 
Source

Counter and 
Status Reset 

Source
Comp. 
Mode

PE LL RO

Unit Event Source

 



 

 Appendix A. Performance Monitoring with BCS Counters 89 

A.5 Software Application Supported BCS Monitoring Events 
In this section the set of BCS Performance monitoring events is described. Each 
performance event is named, the syntax for requesting it is defined, and the abbreviations 
of the many fields that must be used by name and the contents of those fields are defined. 
The message classes and their opcodes are used as defined in Section A.6. In making this 
description of the supported performance monitoring events some simplifications are made. 
Therefore if a user only uses this syntax to describe events then not all capability in the BCS 
performance monitoring is available. 

A list of all performance events is presented here in the order defined in this section. As 
defined they collect counts from all the BCSs in the node: 

BCS_PE[] 
BCS_PE_Error[] 
BCS_PE_LOM_Error[] 
BCS_PE_REM_Error[] 
BCS_PE_Twin_Lines[] 
BCS_PE_LOM_Twin_Lines[] 
BCS_PE_REM_Twin_Lines[] 
BCS_PE_Directory_Active_Levels[] 
BCS_PE_LOM_Directory_Active_Levels[] 
BCS_PE_REM_Directory_Active_Levels[] 
BCS_PE_Directory_Access_Event[] 
BCS_PE_LOM_Directory_Access_Event[] 
BCS_PE_REM_Directory_Access_Event[] 
BCS_PE_Incoming_Traffic[] 
BCS_PE_LOM_Incoming_Traffic[] 
BCS_PE_REM_Incoming_Traffic[] 
BCS_PE_Outgoing_Traffic[] 
BCS_PE_LOM_Outgoing_Traffic[] 
BCS_PE_REM_Outgoing_Traffic[] 
BCS_PE_Tracker_Traffic[] 
BCS_PE_LOM_Tracker_Traffic[] 
BCS_PE_REM_Tracker_Traffic[] 
BCS_PE_Lookup_Traffic[] 
BCS_PE_LOM_Lookup_Traffic[] 
BCS_PE_REM_Lookup_Traffic[] 
BCS_PE_Short_Retry[] 
BCS_PE_LOM_Short_Retry[] 
BCS_PE_REM_Short_Retry[] 
BCS_PE_Long_Retry[] 
BCS_PE_LOM_Long_Retry[] 
BCS_PE_REM_Long_Retry[] 
BCS_PE_Starvation[] 
BCS_PE_LOM_Starvation[] 
BCS_PE_REM_Starvation[] 
BCS_PE_Buffer_Occupation[] 
BCS_PE_LOM_Buffer_Occupation[] 
BCS_PE_REM_Buffer_Occupation[] 
BCS_PE_Interface_RT_East 
BCS_PE_LOM_Interface_RT_East 



 

90 bullx DE User's Guide 

BCS_PE_REM_Interface_RT_East 
BCS_PE_Interface_RT_West 
BCS_PE_LOM_Interface_RT_West 
BCS_PE_REM_Interface_RT_West 
BCS_PE_Tx_Request[] 
BCS_PE_LOM_Tx_Request[] 
BCS_PE_REM_Tx_Request[] 
BCS_PE_Tx_Response[] 
BCS_PE_LOM_Tx_Response[] 
BCS_PE_REM_Tx_Response[] 
 
BCS_NCMH[] 
BCS_NCMH_Buffer_Occupation[] 
BCS_NCMH_Tx_QPI_Alloc[] 
BCS_NCMH_Tx_XQPI_Alloc[] 
BCS_NCMH_Tx_QPI_Release[] 
BCS_NCMH_Tx_XQPI_Release[] 
BCS_NCMH_Lock_Message 
BCS_NCMH_Unlock_Message 
BCS_NCMH_Lock_Message_Latency 
BCS_NCMH_ECC_Error[] 
BCS_NCMH_NCCX_OB[] 
BCS_NCMH_NCXC_OB[] 
BCS_NCMH_QPI_XQPI_Traffic[] 
BCS_NCMH_XQPI_QPI_Traffic[] 
 
BCS_LL[] 
BCS_LL_Interface[] 
BCS_LL_LLCH_Interface[] 
BCS_LL_LLIH_Interface[] 
BCS_LL_LLXH_Interface[] 
 
BCS_RO[] 
BCS_RO_Interface[] 
BCS_RO_ROIC_Interface[] 
BCS_RO_ROCI_Interface[] 

 

If the counts from all the BCSs are added together then the syntax above is used as shown. 
However a special variant of each performance event is allowed that provides the 
capability to choose from which BCS the counts for an event will be collected. This is 
controlled in the event definition by noting which BCSs will collect counts for this event. It is 
noted by the following syntax for each BCS that will collect the count by putting its number 
(0, 1, 2, 3) in the event name (up to three of the four BCSs may be listed): 

BCS#1#2#3_PE_REM_Incoming_Traffic[] 

For example to get the count from BCS0: 

BCS0_PE_Incoming_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, 
NID=0,NIDM=0] 

For example to get the count from BCS1, BCS2 and BCS3: 

BCS123_PE_Incoming_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, 
NID=0,NIDM=0] 



 

 Appendix A. Performance Monitoring with BCS Counters 91 

This can be especially useful in experiments where the performance analyst is evaluating a 
test program that is referencing from one BCS to another and wishes to collect separate 
counts from the BCS where the CPU is executing the test and from the BCS where the 
memory being referenced is located. 

PE Event Setup 
For PE count events the PMR for the chosen counter for this event should have the following 
settings where Unit Event Source can have one of three values: 

Counter Enable Source : local count enable = 001 
Counter Status Output Source : perfcon = 000 
Count Mode : count events = 00 
Counter Event Source : unit pme event = 000 
Counter and Status Reset Source : no reset = 000 
Compare Mode : disabled = 00 
Unit Event Source : LoM0-3 & ReM0-3 = 111111110 
Unit Type Source : PE = 00 

The Unit Event Source can have the above value if both LoM0-3 and ReM0-3 are 
configured to provide the source of the count. Here are the three choices: 

Unit Event Source : LoM0-3 & ReM0-3 = 111111110 
Unit Event Source : LoM0-3 = 111100000 
Unit Event Source : ReM0-3 = 000011110 

The syntax for the expert user that does not wish any software tool help in defining an 
event is to provide the PMR and PMPE_PME register contents: 

BCS_PE[PMR=0x1FE00004,LOMH=0.0.0x7E0420.0,REMH=0.0.0x7E0420.0] 

Error Monitoring 

You select the set of errors you wish to monitor. The definition will fill bits 6-0 of PMPE_PME 
register. The PMR for the chosen counter for this event should have values shown in the "PE 
Event Setup" section with Unit Event Source chosen as LoM0-3 and ReM0-3. For example: 

 Bits 6-0 in binary 
BCS_PE_Error[DSS] 0000001 
BCS_PE_Error[DSS+DSD] 0000011 

Where the set of errors and their abbreviations are: 

Directory SRAM Single ECC Error DSS 
Directory SRAM Double ECC Error DSD 
Directory LOT Single ECC Error DLS 
Directory DCT Single ECC Error DDCS 
Directory DLIT Single ECC Error DDLS 
Tracker Single ECC Error TRS 
Virtual Output FIFO Single ECC Error VOFS 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Error[VOFS] 1000000 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Error[DDLS] 0010000 



 

92 bullx DE User's Guide 

Twin Lines Monitoring 

You select the Event of this type that you want to count. The definition will fill bits 9-7 of 
PMPE_PME register. The PMR for the chosen counter for this event should have values 
shown in the "PE Event Setup" section with Unit Event Source chosen as LoM0-3 and ReM0-
3. For example: 

 Bits 9-7 in binary 
BCS_PE_Twin_Lines[LDS] 001 
BCS_PE_Twin_Lines[LM] 010 
BCS_PE_Twin_Lines[LHO] 011 

Where the set of events and their abbreviations are: 

Lookup to Directory SRAM LDS 
Lookup Miss LM 
Lookup Hit with one of the Twin Lines in non-I State LHO 
Lookup Hit with both of the Twin Lines in non-I State LHB 
For Unit Event Source chosen as LoM0-3, here is an example: 
BCS_PE_LOM_Twin_Lines[LM] 010 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Twin_Lines[LHB] 100 

Directory Active Levels Monitoring 

You select the Directory Active Levels Threshold (0-31). You select Active Levels Event: 
greater than or equal. 

The Directory Active Levels Monitoring field is 
Threshold THR 

The definition will fill bits 16-10 of PMPE_PME register. The PMR for the chosen counter for 
this event should have values shown in the "PE Event Setup" section with Unit Event Source 
chosen as LoM0-3 and ReM0-3. For example: 

 Bits 16-10 in binary 
BCS_PE_Directory_Active_Levels[THR>12] 0110001 
BCS_PE_Directory_Active_Levels[THR=12] 0110010 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Directory_Active_Levels[THR>12 0110001 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Directory_Active_Levels[THR=12] 0110010 

Directory Access Monitoring 

You select the directory access type to count. The definition will fill bits 19-17 of 
PMPE_PME register. The PMR for the chosen counter for this event should have values 
shown in the "PE Event Setup" section with Unit Event Source chosen as LoM0-3 and ReM0-
3. For example: 

 Bits 19-17 in binary 
BCS_PE_Directory_Access_Event[DSU] 001 
BCS_PE_Directory_Access_Event[DIR] 100 

Where the set of exclusive events and their abbreviations are: 

Directory SRAM Update Access DSU 



 

 Appendix A. Performance Monitoring with BCS Counters 93 

Directory SRAM Read Access DSR 
Directory IPT or SRAM Update Access DIU 
Directory IPT or SRAM Read Access DIR 
Transaction Elected to Access the Pipeline TEA 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Directory_Access_Event[TEA] 101 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Directory_Access_Event[DSR] 010 

Incoming Traffic Identification Monitoring 

There are four cases of Traffic Identification Events. This is the first. The Traffic Identification 
Direction is selected by setting bits (64-63): 

Incoming= 00 
Outgoing= 01 
Tracker Output= 10 
Lookup Response= 11 

For this case Incoming (00) is chosen. The defaulted fields are: 

Lookup Directory Status= 00000 LST 
Tracker Output State= 00 TOS 
Tracker Output Response Type Received= 0000000000 TOR 

The filled fields are: 

Direction= 00 
Transaction Type MsgClass MC 
Transaction Type OpCode OC 
Transaction Type MsgClass Mask MCM 
Transaction Type OpCode Mask OCM 
Node ID (NID) NID 
NID Mask NIDM 

The definition will fill bits 64-20 of PMPE_PME register. The PMR for the chosen counter for 
this event should have values shown in the "PE Event Setup" section with Unit Event Source 
chosen as LoM0-3 and ReM0-3. For example: 

  Bits 64-20 in binary 
BCS_PE_Incoming_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, NID=0,NIDM=0] 
 001110000011110000000000000000000000000000000 

This counts DRS transaction types for all opcodes for all RHNIDs 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Incoming_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, 
NID=0,NIDM=0] 
 001110000011110000000000000000000000000000000 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Incoming_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, 
NID=0,NIDM=0] 
 001110000011110000000000000000000000000000000 



 

94 bullx DE User's Guide 

Outgoing Traffic Identification Monitoring 

There are four cases of Traffic Identification Events. For this case Outgoing (01) is chosen. 
The defaulted fields are: 

Lookup Directory Status= 00000 LST 
Tracker Output State= 00 TOS 
Tracker Output Response Type Received= 0000000000 TOR 

The filled fields are 

Direction= 01 
Transaction Type MsgClass  MC 
Transaction Type OpCode  OC 
Transaction Type MsgClass Mask  MCM 
Transaction Type OpCode Mask  OCM 
Node ID (NID)  NID 
NID Mask  NIDM 

The definition will fill bits 64-20 of PMPE_PME register. The PMR for the chosen counter for 
this event should have values shown in the "PE Event Setup" section with Unit Event Source 
chosen as LoM0-3 and ReM0-3. For example: 

  Bits 64-20 in binary 

BCS_PE_Outgoing_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, NID=0,NIDM=0] 

 011110000011110000000000000000000000000000000 

This counts DRS transaction types for all opcodes for all DNIDs 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Outgoing_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, 
NID=0,NIDM=0] 

 001110000011110000000000000000000000000000000 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Outgoing_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, 
NID=0,NIDM=0] 

 001110000011110000000000000000000000000000000 

Tracker Output Traffic Identification Monitoring 

There are four cases of Traffic Identification Events. For this case Tracker Output (10) is 
chosen. The defaulted fields are: 

Node ID (NID) 00000 NID 
NID Mask 00000 NIDM 
Lookup Directory Status= 00000 LST 

The filled fields are: 

Direction= 10 
Transaction Type MsgClass  MC 
Transaction Type OpCode  OC 
Transaction Type MsgClass Mask  MCM 
Transaction Type OpCode Mask  OCM 
Tracker Output State=  TOS 
Tracker Output Response Type Received=  TOR 



 

 Appendix A. Performance Monitoring with BCS Counters 95 

The definition will fill bits 64-20 of PMPE_PME register. The PMR for the chosen counter for 
this event should have values shown in the "PE Event Setup" section with Unit Event Source 
chosen as LoM0-3 and ReM0-3. For example: 

  Bits 64-20 in binary 

BCS_PE_Tracker_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, 
TOS=dnSnp,TOR=RsplWb+RspSWb] 

 101110000011110000000000000000000000000000000 

This counts DRS transaction types for all opcodes for the selected Tracker Output state. 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Tracker_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, 
TOS=dnSnp,TOR=RsplWb+RspSWb] 

 101110000011110000000000000000000000000000000 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Tracker_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, 
TOS=dnSnp,TOR=RsplWb+RspSWb] 

 101110000011110000000000000000000000000000000 

Lookup Response Traffic Identification Monitoring 

There are four cases of Traffic Identification Events. For this case Lookup Response (11) is 
chosen. The defaulted fields are: 

Node ID (NID) 00000 NID 
NID Mask 00000 NIDM 
Tracker Output State= 00 TOS 
Tracker Output Response Type Received= 0000000000 TOR 

The filled fields are: 

Direction= 11 
Transaction Type MsgClass  MC 
Transaction Type OpCode  OC 
Transaction Type MsgClass Mask  MCM 
Transaction Type OpCode Mask  OCM 
Lookup Directory Status  LST 

The definition will fill bits 64-20 of PMPE_PME register. The PMR for the chosen counter for 
this event should have values shown in the "PE Event Setup" section with Unit Event Source 
chosen as LoM0-3 and ReM0-3. For example: 

  Bits 64-20 in binary 

BCS_PE_Lookup_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, LST=EXC+1S] 



 

96 bullx DE User's Guide 

 101110000011110000000000000000000000000000000 
This counts DRS transaction types for all opcodes for the selected Lookup Directory 
Statuses. 

Where the set of exclusive Lookup Directory Statuses and their abbreviations are:: 

Exclusive State   EXC 
Shared State and 3 Sharers  3S 
Shared State and 2 Sharers  2S 
Shared State and 1 Sharer  1S 
Invalid State  INV 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Lookup_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, LST=EXC+1S] 
 101110000011110000000000000000000000000000000 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Lookup_Traffic[MC=DRS,MCM=0xF,OC=0x0,OCM=0x0, LST=EX+1S] 
 101110000011110000000000000000000000000000000 

Retry Monitoring 

You select the Retry Event Type. You select Short or Long Retry type. You select the set of 
retries that you wish to monitor. 

The Retry Monitoring fields are: 
Retry Type  TY 
Retry Event  EV 

The definition will fill bits 74-65 of PMPE_PME register. The PMR for the chosen counter for 
this event should have values shown in the "PE Event Setup" section with Unit Event Source 
chosen as LoM0-3 and ReM0-3. For example: 

  Bits 74-65 in binary 

BCS_PE_Short_Retry[EV=NEW,TY=ATOM]  0000001010 

BCS_PE_Long_Retry[EV=RET,TY=FC+PC]  1000110001 

Where the set of exclusive Retry Events and their abbreviations are: 
Retry has Occurred  RET 
New Retry has Occurred  NEW 
Valid Transaction Seen in Retry Detection  VAL 

Where the set of inclusive Short Retry Types and their abbreviations are: 
Impossible Lookup  IMP 
Atomicity: Same/Twin Address already in Pipeline  ATOM 

Where the set of inclusive Long Retry Types and their abbreviations are: 
Back Invalidate Refused  BIR 
Single ECC Errors  SEE 
Full Conflict  FC 
Partial Conflict  PC 
W-TID Pool Unavailable  WTID 
E-TID Pool Unavailable  ETID 
Output Channel not Available  OCNA 

For Unit Event Source chosen as LoM0-3, here is an example: 
BCS_PE_LOM_Short_Retry[EV=NEW,TY=ATOM] 0000001010 
BCS_PE_LOM_Long_Retry[EV=RET,TY=FC+PC] 1000110001 



 

 Appendix A. Performance Monitoring with BCS Counters 97 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Short_Retry[EV=NEW,TY=ATOM] 0000001010 

BCS_PE_REM_Long_Retry[EV=RET,TY=FC+PC] 1000110001 

Starvation Monitoring 

You select the Starvation Type. You select Starvation Event. You select Starvation Threshold; 
if you choose Event 011 or 100 otherwise it is set to 0. 

The Starvation Monitoring fields are: 

Starvation Type  TY 

Starvation Event  EV 

The definition will fill bits 89-75 of PMPE_PME register. The PMR for the chosen counter for 
this event should have values shown in the "PE Event Setup" section with Unit Event Source 
chosen as LoM0-3 and ReM0-3. For example: 

  Bits 89-75 in binary 

BCS_PE_Starvation[TY=Snoop,EV_ACT] 001000000000010 

BCS_PE_Starvation[TY=WrReq,EV_THR>3] 011000000011011 

Where the set of exclusive Starvation Events and their abbreviations are: 
Start of New Starvation Mechanism  EV_STR 
Starvation Mechanism is Active  EV_ACT 
Threshold Comparison (Including the threshold amount) EV_THR 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Starvation[TY=WrReq,EV_THR>3] 011000000011011 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Starvation[TY=WrReq,EV_THR>3] 011000000011011 

Buffer Occupation Monitoring 

You select the Buffer Select (choose the buffer to monitor). You select comparison Event: 
greater than or equal. You select occupation Threshold. 

The Buffer Occupation Monitoring fields are: 
Buffer Select  BUF 
Threshold  THR 

The definition will fill bits 104-90 of PMPE_PME register. The PMR for the chosen counter 
for this event should have values shown in the "PE Event Setup" section with Unit Event 
Source chosen as LoM0-3 and ReM0 3. For example: 

 Bits 104-90 in binary 
BCS_PE_Buffer_Occupation[BUF=WT0,THR>7] 001100000011101 
BCS_PE_Buffer_Occupation[BUF=WB,THR=0] 000000000000011 



 

98 bullx DE User's Guide 

Where the set of exclusive Buffer Names and their abbreviations are: 
Write Buffer  WB 
DCT  DCT 
LOT  LOT 
West TID Pool 0  WT0 
West TID Pool 1  WT1 
West TID Pool 2  WT2 
West TID Pool 3  WT3 
Sum of West TID Pools  WTA 
East TID Pool  ETP 
East NDR Virtual FIFO  ENDR 
East SNP Virtual FIFO  ESNP 
West HOM Virtual FIFO  WHOM 
West SNP Virtual FIFO  WSNP 
WSB  WSB 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Buffer_Occupation[BUF=WT0,THR>7] 001100000011101 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Buffer_Occupation[BUF=WT0,THR>7] 001100000011101 

Interface Monitoring 

You select the direction of packet (flit) flow. Then you can count the number of flits emitted. 
The definition will fill bits 106-105 of PMPE_PME register. The PMR for the chosen counter 
for this event should have values shown in the "PE Event Setup" section with Unit Event 
Source chosen as LoM0-3 and ReM0-3, for example: 

  Bits 106-105 in binary 
BCS_PE_Interface_RT_East  01 
BCS_PE_Interface_RT_West  10 

BCS_PE_Interface_RT_East counts the number of flits that has been emitted RT-East to OB. 
BCS_PE_Interface_RT_West counts the number of flits that has been emitted RT-West to OB. 

For Unit Event Source chosen as LoM0-3, here is an example: 
BCS_PE_LOM_Interface_RT_East  01 
BCS_PE_LOM_Interface_RT_West  10 

For Unit Event Source chosen as ReM0-3, here is an example: 
BCS_PE_REM_Interface_RT_East  01 
BCS_PE_REM_Interface_RT_West  10 

Transaction Monitoring 

You select the Event: Request or Response. You select the Transaction Type. Then you select 
the Opcode and Opcode Mask. 

The Buffer Occupation Monitoring fields are: 
Transaction Type  TY 
OpCode  OC 
OpCode Mask  OCM 

The definition will fill bits 118-107 of PMPE_PME register. The PMR for the chosen counter 
for this event should have values shown in the "PE Event Setup" section with Unit Event 
Source chosen as LoM0-3 and  
ReM0-3. For example: 



 

 Appendix A. Performance Monitoring with BCS Counters 99 

  Bits 118-107 in binary 
BCS_PE_Tx_Request[TY=Write,OC=WbMtoI,OCM=0xF] 010101001111 
BCS_PE_Tx_Response[TY=Snoop,OC=SnpInvOwn,OCM=0xF] 101011001111 

For Unit Event Source chosen as LoM0-3, here is an example: 

BCS_PE_LOM_Tx_Request[TY=Write,OC=WbMtoI,OCM=0xF]  10101001111 

BCS_PE_LOM_Tx_Response[TY=Snoop,OC=SnpInvOwn,OCM=0xF] 101011001111 

For Unit Event Source chosen as ReM0-3, here is an example: 

BCS_PE_REM_Tx_Request[TY=Write,OC=WbMtoI,OCM=0xF] 010101001111 

BCS_PE_REM_Tx_Response[TY=Snoop,OC=SnpInvOwn,OCM=0xF] 101011001111 

This is setup to count PE Transactions. 



 

100 bullx DE User's Guide 

NCMH Event Setup 
For the NCMH count events the PMR for the chosen counter for this event should have the 
following settings: 

Counter Enable Source : local count enable = 001 
Counter Status Output Source : perfcon = 000 
Count Mode : count events = 00 
Counter Event Source : unit pme event = 000 
Counter and Status Reset Source : no reset = 000 
Compare Mode : disabled = 00 
Unit Event Source : ncmh = 000000001 
Unit Type Source : PE = 00 

The syntax for the expert user that does not wish any software tool help in defining an 
event is to provide the PMR and PMNC_PME register contents: 

BCS_NCMH[PMR=0x00100004,NCMH=0.0x7E0420.0] 

Buffer Occupation Monitoring 

You select the QPI Tracker Buffer or the XQPI Tracker Buffer. You select the Threshold (0 to 
63). You select comparison Event: greater than or equal. 

The Buffer Occupation Monitoring fields are: 
QPI Tracker Buffer QPI_Tracker 
XQPI Tracker Buffer XQPI_Tracker 

To the field name is appended the comparison event type > or = and the Threshold amount 
as shown in the example below. 

The definition will fill bits 8-0 of PMNC_PME register. For example: 
 Bits 8-0 in binary 
BCS_NCMH_Buffer_Occupation[QPI_Tracker>31] 001111101 
BCS_NCMH_Buffer_Occupation[XQPI_Tracker=3] 100001101 
BCS_NCMH_Buffer_Occupation[QPI_Tracker>0] 000000001 

The PMR for the chosen counter for this event should have values shown above. 

Transaction Monitoring 

You select the Event: Allocate or Release. You Select the Buffer: QPI Tracker or XQPI 
Tracker. Then you select the Transaction Type Msgclass, Msgclass Mask, Opcode, and 
Opcode Mask. 

The Buffer Occupation Monitoring fields are 
Transaction Type MsgClass MC 
Transaction Type OpCode OC 
Transaction Type MsgClass Mask MCM 
Transaction Type OpCode Mask OCM 

The definition will fill bits 27-9 of PMNC_PME register. For example 
Bits 27-9 in binary 
BCS_NCMH_Tx_QPI_Alloc[MC=DRS,MCM=0xF,OC=0,OCM=0]
 0101110111100000000 
BCS_NCMH_Tx_XQPI_Alloc[MC=DRS,MCM=0xF,OC=0,OCM=0]
 0111110111100000000 



 

 Appendix A. Performance Monitoring with BCS Counters 101 

BCS_NCMH_Tx_QPI_Release[MC=DRS,MCM=0xF,OC=0,OCM=0]
 1001110111100000000 
BCS_NCMH_Tx_XQPI_Release[MC=DRS,MCM=0xF,OC=0,OCM=0]
 1011110111100000000 

The PMR for the chosen counter for this event should have values shown in the "NCMH 
Event Setup" section. 

This is setup to count NCMH Transactions. 

Lock Monitoring 

Two ways are available to use the Lock Latency event: 
1. As a counter to count lock messages and / or 
2. As a timer to accumulate the time that Locks are closed. 

To setup the counter capability you select one of the two counters listed below (the count 
results are expected to be the same). The definition will fill bits 29-28 of PMNC_PME 
register. For example: 

 Bits 29-28 in binary 
BCS_NCMH_Lock_Message 01 
BCS_NCMH_Unlock_Message 10 

The PMR for the chosen counter for this event should have values shown in the "NCMH 
Event Setup" section. 

There are a number of different latency measurements that can be taken in the PE and 
NCMH units.  A single measurement is taken by counting the number of cycles from a Start 
Event to a Stop Event. As a single measurement isn't useful, the average latency is 
measured by counting the latencies of all target transactions and dividing that by the 
number of target transactions. [The counter definition above is the definition of target 
transactions for this example.] 

A pair of counters is required to accumulate the total latency time. PAIR0_CNT0 is set up to 
create a signal that lasts for the duration of the transaction. The start event of the 
transaction (for example Lock sent to NCMH) is the Event Source; the stop event (Unlock 
sent to NCMH) is programmed as the Event Source input to the Partner counter and is used 
by PAIR0_CNT0 as the reset source. The compare register for this counter is initialized with 
one and the compare output is sent to the partner as the Status Output. 

Set up the NCMH event registers for a Lock Latency transaction: Event 0 is the Lock, Event1 
is the Unlock. The monitoring event is requested by 

BCS_NCMH_Lock_Message_Latency 

Pair0_PMNC_PME0 
 Bits 29-28 in binary 
BCS_NCMH_Lock_Message 01 

Lock Latency Event : Lock message sent = 01 

Pair0_PMNC_PME1 
 Bits 29-28 in binary 
BCS_NCMH_Unlock_Message 10 

Set up PMCC for the Interval Timer or Local Count Enable method of running the monitor. 
Collect the results by reading the counter PMD registers. Note that PAIR0_CNT0 is not read 
as it is not interesting. 

The PAIR0_CNT0_PMR for this event should have the following settings: 
Counter Enable Source : local count enable/timer = 001 



 

102 bullx DE User's Guide 

Counter Status Output Source : partner = 001 
Count Mode : count events = 00 
Counter Event Source : unit pme event = 000 
Counter and Status Reset Source : partner's incoming event = 010 
Compare Mode : max compare = 01 
Unit Event Source : ncmh = 000000001 
Unit Type Source : PE = 00 

The PAIR0_CNT1_PMR for this event should have the following settings: 
Counter Enable Source : local count enable/timer = 001 
Counter Status Output Source : perfcon = 000 
Count Mode : count events = 00 
Counter Event Source : partner status = 001 
Counter and Status Reset Source : no reset = 000 
Compare Mode : disabled = 00 
Unit Event Source : same as PAIR0_CNT0_PMR 
Unit Type Source : PE = 00 

The PAIR0_CNT0_PMC for this event should have the Compare value set to 1. 

PAIR0_CNT1 is setup to count cycles for the duration of the transaction, the sum of the 
latencies of all target transactions. The partner status, the comparison of the 
PAIR0_CNT0_PMD with the value in PMC (=1), is the Event Source. Note that the Unit 
Event Source is set up for one of the PE units, but it is not being used as the Counter Event 
Source for this counter; it is being used by the partner as a reset source (remember the 
hard link between event0/counter0 and event1/counter1). 

ECC Error Monitoring 

You select the ECC errors you want to count. 
The definition will fill bits 33-30 of the PMNC_PME register. For example: 

 Bits 33-30 in binary 
BCS_NCMH_ECC_Error[CXS] 0001 
BCS_NCMH_ECC_Error[CXS+XCS] 0011 

Where the set of inclusive ECC Error Types and their abbreviations are 
QPI to XQPI (NCCX) Single ECC error CXS 
XQPI to QPI (NCXC) Single ECC error XCS 
QPI to XQPI Double ECC error CXD 
XQPI to QPI Double ECC error XCD 

The PMR for the chosen counter for this event should have values shown in the "NCMH 
Event Setup" section. 

Interface Monitoring 

You select QPI or XQPI to Output Buffer (NCCX to OB or NCXC to OB). You select the 
Event that you want to count. 
The definition will fill bits 36-34 of PMNC_PME register. For example 

 Bits 36-34 in binary 
BCS_NCMH_NCCX_OB[PKT] 001 
BCS_NCMH_NCXC_OB[FLT] 110 

Where the set of exclusive Interface Events and their abbreviations are 
A Packet has been emitted PKT 
A Flit has been emitted FLT 
Lack of credit on a Flit waiting to be emitted LOC 



 

 Appendix A. Performance Monitoring with BCS Counters 103 

The PMR for the chosen counter for this event should have values shown in the "NCMH 
Event Setup" section. 

Traffic Monitoring 

You select direction: QPI to XQPI or XQPI to QPI. You select the destination node ID (DNID) 
and its DNID Mask. You select the requestor node ID (RHNID) and its RHNID Mask. You 
select Transaction Type and Mask (msgclass + opcode). 

The Traffic Monitoring fields are: 
Destination Node ID (NID) DNID 
Destination NID Mask DNIDM 
Request NID RNID 
Request NID Mask RNIDM 
Transaction Type MsgClass MC 
Transaction Type OpCode OC 
Transaction Type MsgClass Mask MCM 
Transaction Type OpCode Mask OCM 

The definition will fill bits 73-37 of PMNC_PME register. For example: 
 Bits 73-37 in binary 
BCS_NCMH_QPI_XQPI_Traffic[DNID=0,DNIDM=0, 
RNID=0,RNIDM=0,MC=DRS,MCM=0xF,OC=0x0,OCM=0x0] 
 0000000000000000000001110111100000000 
BCS_NCMH_XQPI_QPI_Traffic[DNID=0,DNIDM=0, 
RNID=0,RNIDM=0,MC=DRS,MCM=0xF,OC=0x0,OCM=0x0] 
 1000000000000000000001110111100000000 

The PMR for the chosen counter for this event should have values shown in the "NCMH 
Event Setup" section. 

LL Event Setup 
The event interface from most LL blocks in the BCS chip was connected incorrectly making 
many of the event selections non-functional. In fact only one remains usable. 

For the LL count events the PMR for the chosen counter for this event should have the 
following settings where Unit Event Source can have one of four values: 

Counter Enable Source : local count enable = 001 
Counter Status Output Source : perfcon = 000 
Count Mode : count events = 00 
Counter Event Source : unit pme event = 000 
Counter and Status Reset Source : no reset = 000 
Compare Mode : disabled = 00 
Unit Event Source : LLch0-3 & LLih0-1 & LLxh0-2 = 111111111 
Unit Type Source : LL = 01 

The Unit Event Source can have the above value if LLch0-3, LLih0-1 and LLxh0-3 are 
configured to provide the source of the count. Here are the four choices: 

Unit Event Source : LLch0-3 & LLih0-1 & LLxh0-2 = 111111111 
Unit Event Source : LLch0-3 = 111100000 
Unit Event Source : LLih0-1 = 000011000 
Unit Event Source : LLxh0-2 = 000000111 



 

104 bullx DE User's Guide 

The syntax for the expert user that does not wish any software tool help in defining an 
event is to provide the PMR and PMLL_PME register contents: 

BCS_LL[PMR=0x3FF00004,LLCH=0.0x7E0420,LLIH=0.0x7E0420, LLXH=0.0x7E0420] 

Interface Monitoring 

You select the Select the type of OB to LL traffic needed. You select the Event. 

The Interface Monitoring fields are 
Interface Select IS 
Interface Event IE 

The definition will fill bits 32-25 of PMLL_PME register. The PMR for the chosen counter for 
this event should have values shown in the "LL Event Setup" section with Unit Event Source 
chosen as LLch0-3, LLih0-1 and LLxh0-3. For example 

 Bits 32-25 in binary 
BCS_LL_Interface[IS=OL01,IE=FLT] 10001011 

Where the set of exclusive Interface Select Types and their abbreviations are: 

(X)QPI to LL Flit 0 and 1 CL01 
(X)QPI to LL Flit 2 and 3 CL23 
(X)QPI to LL Flit 0, 1, 2 and 3 CL0123 
(X)QPI to LL Flit 0, 1, 2 and 3 and VNO Traffic Only CLV 
LL to HD*R LHR 
LL to HD*L LHL 
LL to HD*L; Snoop Traffic Only LSNP 
LL to NC Flit 0 and 1 LN01 
LL to RO Flit 0 and 1 LR01 
LL to RO Flit 2 and 3 LR23 
LL to RO Flit 0, 1 ,2 and 3 LR0123 
LLC/I to OBX or LLX to OBC/I_REM Flit 0 and 1 LOBX 
LLC to OBC_LOM LOBC 
OB to LL Flit 0 OL0 
OB to LL Flit 1 OL1 
OB to LL Flit 2 OL2 
OB to LL Flit 3 OL3 
OB to LL Flit 0 and 1 OL01 
OB to LL Flit 2 and 3 OL23 
OB to LL Flit 0, 1 ,2 and 3 OL0123 
OB to LL Flit 0, 1 ,2 and 3 and VNO Traffic Only OLV 

Where the set of exclusive Interface Event Types and their abbreviations are 
A Packet has been Emitted PKT 
A Packet has been Emitted with Idle Latency PIL 
A Flit has been Emitted FLT 
Lack or Credit on a Flit Waiting to be Emitted LOC 

For Unit Event Source chosen as LLch0-3, here is an example: 
BCS_LL_LLCH_Interface[IS=OL01,IE=FLT] 10001011 

For Unit Event Source chosen as LLih0-1, here is an example: 
BCS_LL_LLIH_Interface[IS=OL01,IE=FLT] 10001011 

For Unit Event Source chosen as LLxh0-2, here is an example: 
BCS_LL_LLXH_Interface[IS=OL01,IE=FLT] 10001011 



 

 Appendix A. Performance Monitoring with BCS Counters 105 

RO Event Setup 
Only internal Interface Traffic is measured. 

For the RO count events the PMR for the chosen counter for this event should have the 
following settings where Unit Event Source can have one of three values: 

Counter Enable Source : local count enable = 001 
Counter Status Output Source : perfcon = 000 
Count Mode : count events = 00 
Counter Event Source : unit pme event = 000 
Counter and Status Reset Source : no reset = 000 
Compare Mode : disabled = 00 
Unit Event Source : ROIC & ROCI = 110000000 
Unit Type Source : RO = 10 

The Unit Event Source can have the above value if both ROIC and ROCI are configured to 
provide the source of the count. Here are the three choices: 

Unit Event Source : ROIC & ROCI = 110000000 
Unit Event Source : ROIC = 100000000 
Unit Event Source : ROCI = 010000000 

The syntax for the expert user that does not wish any software tool help in defining an 
event is to provide the PMR and PMRO_PME register contents: 

BCS_RO[PMR=0x58000004,ROIC=2,ROCI=2] 

Interface Monitoring 

You select the Select of the type of traffic needed. You select the Event. 

The Interface Monitoring fields are: 
Interface Select IS 
Interface Event IE 

The definition will fill bits 3-0 of PMRO_PME register. The PMR for the chosen counter for 
this event should have values shown in the "RO Event Setup" section with Unit Event Source 
chosen as ROIC and ROCI. For example: 

 Bits 3-0 in binary 
BCS_RO_Interface[IS=ROB01,IE=LOC] 1011 

Where the set of exclusive Interface Select Types and their abbreviations are: 

RO to OB Flow 0 ROB0 
RO to OB Flow 1 ROB1 
RO to OB Flow 0 and 1 ROB01 
ROIC to ROCI Flow 0 and 1 ICCI 

Where the set of exclusive Interface Event Types and their abbreviations are: 

A Packet has been Emitted PKT 
A Flit has been Emitted FLT 
Lack or Credit on a Flit Waiting to be Emitted LOC 

For Unit Event Source chosen as ROIC, here is an example: 

BCS_RO_ROIC_Interface[IS=ROB01,IE=LOC] 1011 

For Unit Event Source chosen as ROCI, here is an example: 

BCS_RO_ROCI_Interface[IS=ROB01,IE=LOC] 1011 



 

106 bullx DE User's Guide 

A.6 BCS Key Architectural Values 

Message Class and Opcode Mapping 
Any Opcodes not explicitly defined are reserved for future use. Opcodes listed as 
unsupported have been found to be unsupported in the current version of the BCS. Other 
Opcodes may also be unsupported; anyone wishing to discover them is directed to the Intel 
QPI Protocol Specification. Likewise, a NHM or TWK designation means that the Opcode 
is only valid for that platform. Once again, the designation is not exhaustive, the 
assumption being that a user who is counting events based upon Opcodes has the 
knowledge to be doing so, or access to documentation that would interpret it. Also, 
NcMsgB and NcMsgS contain six and ten message types respectively which cannot be 
differentiated for performance monitoring. 

 

Message Class Name Message 
Class 

Encoding 

Opcode 

Snoop (SNP /3) 

SnpCur 0011 0000 

SnpCode 0011 0001 

SnpData 0011 0010 

SnpInvOwn 0011 0100 

SnpInvWbMtoI or SnpInvXtoI 0011 0101 

SnpInvItoE 0011 1000 

PrefetchHint (unsupported) 0011 1111 

Home Request  
(HM / 0) 

RdCur 0000 0000 

RdCode 0000 0001 

RdData 0000 0010 

NonSnpRd (unsupported) 0000 0011 

RdInvOwn 0000 0100 

InvWbMtoI or InvXtoI 0000 0101 

EvctCln (NHM) 0000 0110 

NonSnpWr (unsupported) 0000 0111 

InvItoE 0000 1000 

AckCnfltWbI 0000 1001 

WbMtoI 0000 1100 

WbMtoE 0000 1101 

WbMtoS 0000 1110 

AckCnflt 0000 1111 

Home Response  
(HOM / 1) 

RspI 0001 0000 

RspS 0001 0001 



 

 Appendix A. Performance Monitoring with BCS Counters 107 

Message Class Name Message 
Class 

Encoding 

Opcode 

RspCnflt 0001 0100 

RspCnfltOwn 0001 0110 

RspFwd 0001 1000 

RspFwdI 0001 1001 

RspFwdS 0001 1010 

RspFwdIWb 0001 1011 

RspFwdSWb 0001 1100 

RspIWb 0001 1101 

RspSWb 0001 1110 

Response Channel -
Data (DRS / 14) 

DataC_(FEIMS) 1110 0000 

DataNc 1110 0011 

DataC_(FEIS)_FrcAckCnflt 1110 0001 

DataC_(FEIS)_Cmp 1110 0010 

WbiData 1110 0100 

WbSData 1110 0101 

WbEData 1110 0110 

NonSnpWrData (unsupported) 1110 0111 

WbIDataPtl 1110 1000 

WbEDataPtl 1110 1010 

NonSnpWrDataPtl (unsupported) 1110 1011 

Response Channel - 
Non Data (NDR / 2) 

Gnt_Cmp 0010 0000 

Gnt_FrcAckCnflt 0010 0001 

Cmp 0010 1000 

FrcAckCnflt 0010 1001 

Cmp_FwdCode 0010 1010 

Cmp_FwdInvOwn 0010 1011 

Cmp_FwdInvItoE 0010 1100 

CmpD 0010 0100 

AbortTO (unsupported) 0010 0101 



 

108 bullx DE User's Guide 

Message Class Name Message 
Class 

Encoding 

Opcode 

Non Coherent Bypass 
(NCB /12 ) 

NcWr 1100 0000 

WcWr 1100 0001 

NcMsgB 1100 1000 

PurgeTC (TKW) 1100 1001 

IntLogical (NHM) 1100 1001 

IntPhysical 1100 1010 

IntPrioUpd 1100 1011 

NcWrPtl 1100 1100 

WcWrPtl 1100 1101 

NCP2PB 1100 1110 

DebugData 1100 1111 

Non Coherent 
Standard 
(NCS / 4) 

NcRd 0100 0000 

IntAck 0100 0001 

FERR 0100 0011 

NcRdPtl 0100 0100 

NcCfgRd 0100 0101 

NcLTRd (unsupported) 0100 0110 

NcIORd 0100 0111 

NcCfgWr 0100 1001 

NcLTWr (unsupported) 0100 1010 

NcIOWr 0100 1011 

NcMsgS 0100 1100 

NcP2PS 0100 1101 

Table A-1. Message Class and Opcode Mapping 



 

 Appendix A. Performance Monitoring with BCS Counters 109 

QPI and XQPI NodeID Maps 
The following are the NodeID maps that represent the QPI NodeIDs used by the protocol 
internal to the mainboard and the XQPI NodeIDs used by the protocol between 
mainboards. 

QPI NodeID Map 

 

Component Agent  NID 

NHM 0 

CA0/ HA0 00001 

Ubox 00010 

CA1/HA1 00011 

NHM 1 

CA0/ HA0 00101 

Ubox 00110 

CA1/HA1 00111 

NHM 2 

CA0/ HA0 01001 

Ubox 01010 

CA1/HA1 01011 

NHM 3 

CA0/ HA0 01101 

Ubox 01110 

CA1/HA1 01111 

IOH 0 00000 

IOH 1 00100 

BCS 

CA0/HA0 10001 

NCM 10010 

CA1/HA1 10011 

HA2 10101 

HA3 10111 

Table A-2. QPI NodeID Map 



 

110 bullx DE User's Guide 

XQPI NodeID Map 

 

Component Agent  NID 

BCS 0 

CA0/HA0 00000 

CA1/HA1 00001 

NCM 00010 

CA2/HA2 00011 

CA3/HA3 00100 

BCS 1 

CA0/HA0 01000 

CA1/HA1 01001 

NCM 01010 

CA2/HA2 01011 

CA3/HA3 01100 

BCS 2 

CA0/HA0 10000 

CA1/HA1 10001 

NCM 10010 

CA2/HA2 10011 

CA3/HA3 10100 

BCS 3 

CA0/HA0 11000 

CA1/HA1 11001 

NCM 11010 

CA2/HA2 11011 

CA3/HA3 11100 

Table A-3. XQPI NodeID Map 



 

 Appendix A. Performance Monitoring with BCS Counters 111 

A.7 Configuration Management Description 

Performance Monitor Configuration Registers 
 

Register Symbolic 
Name 

Real Address CSR 
Address 

Attribute Function Description 

 for BCS=0/1/2/3, 
n=0/2/4/6 

    

     Registers that should be initialized 

PERFCON 0000_FDnC_5000 3_1400 RW Control and status Counter control and Status 

PTCTL 0000_FDnC_5004 3_1401 RW Control and status Interval timer control and Status 

PAIR0_CNT0_PMR 
[31:0] 

0000_FDnC_5018 3_1406 RW Control and status Pair0 Counter0 resource control and 
status 

PAIR0_CNT1_PMR 
[31:0] 

0000_FDnC_502C 3_140B RW Control and status Pair0 Counter1 resource control and 
status 

PAIR1_CNT0_PMR 
[31:0] 

0000_FDnC_5040 3_1410 RW Control and status Pair1 Counter0 resource control and 
status 

PAIR1_CNT1_PMR 
[31:0] 

0000_FDnC_5054 3_1415 RW Control and status Pair1 Counter1 resource control and 
status 

PMINIT [31:0] 0000_FDnC_5008 3_1402 RW Initial value Initial value of timer, low order bits 

PMINIT [44:32] 0000_FDnC_500C 3_1403 RW Initial value Initial value of timer, high order bits 

     Registers that can be initialized, 
depending on usage 

PAIR0_CNT0_PMC 
[31:0] 

0000_FDnC_501C 3_1407 RW Initial or current value Pair0 Counter0 compare value or max 
count, low order bits 

PAIR0_CNT0_PMC 
[44:32] 

0000_FDnC_5020 3_1408 RW Initial or current value Pair0 Counter0 compare value or max 
count, high order bits 

PAIR0_CNT1_PMC 
[31:0] 

0000_FDnC_5030 3_140C RW Initial or current value Pair0 Counter1 compare value or max 
count, low order bits 

PAIR0_CNT1_PMC 
[44:32] 

0000_FDnC_5034 3_140D RW Initial or current value Pair0 Counter1 compare value or max 
count, high order bits 

PAIR1_CNT0_PMC 
[31:0] 

0000_FDnC_5044 3_1411 RW Initial or current value Pair1 Counter0 compare value or max 
count, low order bits 

PAIR1_CNT0_PMC 
[44:32] 

0000_FDnC_5048 3_1412 RW Initial or current value Pair1 Counter0 compare value or max 
count, high order bits 

PAIR1_CNT1_PMC 
[31:0] 

0000_FDnC_5058 3_1416 RW Initial or current value Pair1 Counter1 compare value or max 
count, low order bits 

PAIR1_CNT1_PMC 
[44:32] 

0000_FDnC_505C 3_1417 RW Initial or current value Pair1 Counter1 compare value or max 
count, high order bits 

     Registers that are read and can be 
cleared 

PAIR0_CNT0_PMD 
[31:0] 

0000_FDnC_5024 3_1409 RW Current value Pair0 Counter0 current count, low order 
bits 

PAIR0_CNT0_PMD 
[44:32] 

0000_FDnC_5028 3_140A RW Current value Pair0 Counter0 current count, high order 
bits 

PAIR0_CNT1_PMD 0000_FDnC_5038 3_140E RW Current value Pair0 Counter1 current count, low order 



 

112 bullx DE User's Guide 

Register Symbolic 
Name 

Real Address CSR 
Address 

Attribute Function Description 

[31:0] bits 

PAIR0_CNT1_PMD 
[44:32] 

0000_FDnC_503C 3_140F RW Current value Pair0 Counter1 current count, high order 
bits 

PAIR1_CNT0_PMD 
[31:0] 

0000_FDnC_504C 3_1413 RW Current value Pair1 Counter0 current count, low order 
bits 

PAIR1_CNT0_PMD 
[44:32] 

0000_FDnC_5050 3_1414 RW Current value Pair1 Counter0 current count, high order 
bits 

PAIR1_CNT1_PMD 
[31:0] 

0000_FDnC_5060 3_1418 RW Current value Pair1 Counter1 current count, low order 
bits 

PAIR1_CNT1_PMD 
[44:32] 

0000_FDnC_5064 3_1419 RW Current value Pair1 Counter1 current count, high order 
bits 

     Registers that are only read 

PMTIM [31:0] 0000_FDnC_5010 3_1404 RO   

PMTIM [44:32] 0000_FDnC_5014 3_1405 RO   

Table A-4. Performance Monitor Configuration Registers 

Event Configuration Registers 
 

Register Symbolic 
Name 

Real Address CSR Address Attribute Function Description 

 for BCS=0/1/2/3, n=0/2/4/6    

 for Inst=0/1/2/3, 

i=0/1/2/3, k=0/4/8/C 

   

u_LLCH.PMLL0 0000_FDni_0000 0_k000 RW LLCH events Event0 bits [31:0] 

u_LLCH.PMLL0 0000_FDni_0004 0_k001 RW LLCH events Event0 bit [32] 

u_LLCH.PMLL1 0000_FDni_2000 0_k800 RW LLCH events Event1 bits [31:0] 

u_LLCH.PMLL1 0000_FDni_2004 0_k801 RW LLCH events Event1 bit [32] 

 for Inst=0/1, 

i=4/5, k=0/4 

   

u_LLIH.PMLL0 0000_FDni_0000 1_k000 RW LLIH events Event0 bits [31:0] 

u_LLIH.PMLL0 0000_FDni_0004 1_k001 RW LLIH events Event0 bit [32] 

u_LLIH.PMLL1 0000_FDni_2000 1_k800 RW LLIH events Event1 bits [31:0] 

u_LLIH.PMLL1 0000_FDni_2004 1_k801 RW LLIH events Event1 bit [32] 

 for Inst=0/1/2, 

i=8/9/A, k=0/4/8 

   

u_LLXH.PMLL0 0000_FDni_0000 2_k000 RW LLXH events Event0 bits [31:0] 

u_LLXH.PMLL0 0000_FDni_0004 2_k001 RW LLXH events Event0 bit [32] 

u_LLXH.PMLL1 0000_FDni_1000 2_k400 RW LLXH events Event1 bits [31:0] 

u_LLXH.PMLL1 0000_FDni_1004 2_k401 RW LLXH events Event1 bit [32] 

      

u_ROIC.PMRO0 0000_FDn6_CC20 1_B308 RW ROIC events Event0 bits [3:0] 

u_ROIC.PMRO1 0000_FDn6_CC24 1_B309 RW ROIC events Event1 bits [3:0] 

u_ROCI.PMRO0 0000_FDn7_CC20 1_F308 RW ROCI events Event0 bits [3:0] 



 

 Appendix A. Performance Monitoring with BCS Counters 113 

Register Symbolic 
Name 

Real Address CSR Address Attribute Function Description 

u_ROCI.PMRO1 0000_FDn7_CC24 1_F309 RW ROCI events Event1 bits [3:0] 

      

u_NCMH.PMNC0 0000_FDnC_6000 3_1800 RW NCMH events Event0 bits [31:0] 

u_NCMH.PMNC0 0000_FDnC_6004 3_1801 RW NCMH events Event0 bits 
[63:32] 

u_NCMH.PMNC0 0000_FDnC_6008 3_1802 RW NCMH events Event0 bits 
[73:64] 

u_NCMH.PMNC1 0000_FDnC_7000 3_1C00 RW NCMH events Event1 bits [31:0] 

u_NCMH.PMNC1 0000_FDnC_7004 3_1C01 RW NCMH events Event1 bits 
[63:32] 

u_NCMH.PMNC1 0000_FDnC_7008 3_1C02 RW NCMH events Event1 bits 
[73:64] 

 for BCS=0/1/2/3, n=1/3/5/7    

 for Inst=0/1/2/3, 

i=0/1/2/3, k=0/4/8/C 

   

u_REMH.u_REM.PMPE0 0000_FDni_3000 4_kC00 RW REMH events Event0 bits [31:0] 

u_REMH.u_REM.PMPE0 0000_FDni_3004 4_kC01 RW REMH events Event0 bits 
[63:32] 

u_REMH.u_REM.PMPE0 0000_FDni_3008 4_kC02 RW REMH events Event0 bits 
[95:64] 

u_REMH.u_REM.PMPE0 0000_FDni_300C 4_kC03 RW REMH events Event0 bits 
[118:96] 

u_REMH.u_REM.PMPE1 0000_FDni_3800 4_kE00 RW REMH events Event1 bits [31:0] 

u_REMH.u_REM.PMPE1 0000_FDni_3804 4_kE01 RW REMH events Event1 bits 
[63:32] 

u_REMH.u_REM.PMPE1 0000_FDni_3808 4_kE02 RW REMH events Event1 bits 
[95:64] 

u_REMH.u_REM.PMPE1 0000_FDni_380C 4_kE03 RW REMH events Event1 bits 
[118:96] 

 for Inst=0/1/2/3, 

i=4/5/6/7, k=0/4/8/C 

   

u_LOMH.u_LOM.PMPE0 0000_FDni_3000 5_kC00 RW LOMH events Event0 bits [31:0] 

u_LOMH.u_LOM.PMPE0 0000_FDni_3004 5_kC01 RW LOMH events Event0 bits 
[63:32] 

u_LOMH.u_LOM.PMPE0 0000_FDni_3008 5_kC02 RW LOMH events Event0 bits 
[95:64] 

u_LOMH.u_LOM.PMPE0 0000_FDni_300C 5_kC03 RW LOMH events Event0 bits 
[118:96] 

u_LOMH.u_LOM.PMPE1 0000_FDni_3800 5_kE00 RW LOMH events Event1 bits [31:0] 

u_LOMH.u_LOM.PMPE1 0000_FDni_3804 5_kE01 RW LOMH events Event1 bits 
[63:32] 

u_LOMH.u_LOM.PMPE1 0000_FDni_3808 5_kE02 RW LOMH events Event1 bits 
[95:64] 

u_LOMH.u_LOM.PMPE1 0000_FDni_380C 5_kE03 RW LOMH events Event1 bits 
[118:96] 

Table A-5. Event Configuration Registers 



 

114 bullx DE User's Guide 

A.8 BCS BPMON Usage Examples 

Total Memory Traffic For All BCSs Using Incoming Traffic 
This BPMON monitor setup collects all the reads and writes from the requesting nodes 
(using REM events) and the local nodes fulfilling the requests (using LOM events) using 
Incoming Traffic. As the example shows the REM event counts closely match the LOM 
events counts. Read opcodes are counted by using a mask to get the RdCur, RdCode, 
RdData from the HOM0 Message Class in an event. The Write opcode, RdInvOwn, is 
specifically counted in a different event. 

The test used generates reads for one test pass and writes for another test pass. The test 
program generates about 500,000,000 remote memory requests per program instance 
and four instances are executed. Here are the read results from BPMON that also shows 
the BCS performance events measured. 

+--------------------------------------------------------------------+ 
|     BPMON Single Thread Event Results                              | 
+--------------------------------------------------------------------+ 
Event Description                                         Event Count 
BCS_PE_REM_Incoming_Traffic                       1978856781 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0x01,NIDM=0x01] 
BCS_PE_REM_Incoming_Traffic                            1066138 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0x01,NIDM=0x01] 
BCS_PE_LOM_Incoming_Traffic                          1976723675 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0,NIDM=0x00] 
BCS_PE_LOM_Incoming_Traffic                                    1063453 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0,NIDM=0x00] 

Here are the write results from BPMON that also shows the BCS performance events 
measured. 

+--------------------------------------------------------------------+ 
|     BPMON Single Thread Event Results                              | 
+--------------------------------------------------------------------+ 
Event Description                                          Event Count 
BCS_PE_REM_Incoming_Traffic                                   11792759 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0x01,NIDM=0x01] 
BCS_PE_REM_Incoming_Traffic                                 1940487514 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0x01,NIDM=0x01] 
BCS_PE_LOM_Incoming_Traffic                                    9609143 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0,NIDM=0x00] 
BCS_PE_LOM_Incoming_Traffic                                 1940484848 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0,NIDM=0x00] 



 

 Appendix A. Performance Monitoring with BCS Counters 115 

Total Memory Traffic for All BCSs Using Outgoing Traffic 
This BPMON monitor setup collects all the reads and writes from the requesting nodes 
(using LOM events) and the local nodes fulfilling the requests (using REM events) using 
Outgoing Traffic. As the example shows the LOM event counts closely match the REM 
events counts. Read opcodes are counted by using a mask to get the RdCur, RdCode, 
RdData from the HOM0 Message Class in an event. The Write opcode, RdInvOwn, is 
specifically counted in a different event. 

The test used generates reads for one test pass and writes for another test pass. The test 
program generates about 500,000,000 remote memory requests per program instance 
and four instances are executed. Here are the read results from BPMON that also shows 
the BCS performance events measured. 

+--------------------------------------------------------------------+ 
|     BPMON Single Thread Event Results                              | 
+--------------------------------------------------------------------+ 
Event Description                          Event Count 
BCS_PE_REM_Outgoing_Traffic                     1976316475 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0x00,NIDM=0x00] 
BCS_PE_REM_Outgoing_Traffic                      10 23535 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0x00,NIDM=0x00] 
BCS_PE_LOM_Outgoing_Traffic                     1975865466 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0x01,NIDM=0x01] 
BCS_PE_LOM_Outgoing_Traffic                       1021035 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0x01,NIDM=0x01] 

Here are the write results from BPMON that also shows the BCS performance events 
measured. 

+--------------------------------------------------------------------+ 
|     BPMON Single Thread Event Results                              | 
+--------------------------------------------------------------------+ 
Event Description                          Event Count 
BCS_PE_REM_Outgoing_Traffic          9663484 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0x00,NIDM=0x00] 
BCS_PE_REM_Outgoing_Traffic                     1941802417 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0x00,NIDM=0x00] 
BCS_PE_LOM_Outgoing_Traffic                       9217576 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0x01,NIDM=0x01] 
BCS_PE_LOM_Outgoing_Traffic                     1941799879 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0x01,NIDM=0x01] 

Memory Traffic For a Source and a Destination BCS Using Incoming 
Traffic 

This BPMON monitor setup collects all the reads and writes from the requesting node on 
BCS0 (using REM events) and the local node fulfilling the requests on BCS3 (using LOM 
events) using Incoming Traffic. As the example shows the REM event counts closely match 
the LOM events counts. 

The test used generates reads for one test pass and writes for another test pass. The test 
program generates about 500,000,000 remote memory requests per program instance 
and one instance is executed. Here are the read results from BPMON that also shows the 
BCS performance events measured. 



 

116 bullx DE User's Guide 

+--------------------------------------------------------------------+ 
|     BPMON Single Thread Event Results                              | 
+--------------------------------------------------------------------+ 
Event Description                          Event Count 
BCS0_PE_REM_Incoming_Traffic                     496006785 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0x01,NIDM=0x01] 
BCS0_PE_REM_Incoming_Traffic                       246838 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0x01,NIDM=0x01] 
BCS3_PE_LOM_Incoming_Traffic                     494996140 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0,NIDM=0x00] 
BCS3_PE_LOM_Incoming_Traffic                       221481 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0,NIDM=0x00] 

Here are the write results from BPMON that also shows the BCS performance events 
measured. 

+--------------------------------------------------------------------+ 
|     BPMON Single Thread Event Results                              | 
+--------------------------------------------------------------------+ 
Event Description                          Event Count 
BCS0_PE_REM_Incoming_Traffic                      3485584 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0x01,NIDM=0x01] 
BCS0_PE_REM_Incoming_Traffic                     489939668 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0x01,NIDM=0x01] 
BCS3_PE_LOM_Incoming_Traffic                      2502476 
[MC=HOM0,MCM=0xF,OC=0,OCM=0xC,NID=0,NIDM=0x00] 
BCS3_PE_LOM_Incoming_Traffic                     489917358 
[MC=HOM0,MCM=0xF,OC=RdInvOwn,OCM=0xF,NID=0,NIDM=0x00] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 



 

 

 

 Bull Cedoc 

357 avenue Patton 

BP 20845 

49008 Angers Cedex 01 

FRANCE 


	bullx DE User's Guide
	Table of Contents
	Preface
	Intended Readers
	Highlighting
	Related Publications

	Chapter 1. bullx Development Environment
	Chapter 2. bullx DE User Environment
	2.1 bullx DE Installation Path
	2.2 Environment Modules
	2.3 Using Modules
	2.4 bullx DE Module Files

	Chapter 3. Debugging Application with padb
	3.1 Installation
	3.2 Features
	3.3 padb with SLURM / bullx MPI
	3.4 Using padb
	3.5 More Information

	Chapter 4. Application Analysis with bullxprof
	4.1 Environment
	4.2 Usage
	4.3 Command Line Options
	4.4 Configuration
	4.5 Profiling reports
	4.5.1 Timing experiment
	4.5.2 HWC experiment
	4.5.3 MPI experiment
	4.5.4 IO experiment
	4.5.5 MPI/IO experiment


	Chapter 5. MPI Application Profiling
	5.1 MPI Analyser
	5.1.1 MPI Analyser Overview
	5.1.2 Communication Matrices
	5.1.3 Topology of the Execution Environment
	5.1.4 Using profilecomm
	5.1.4.1 profilecomm Options
	5.1.4.2 Messages Size Partitions

	5.1.5 profilecomm Data Analysis
	5.1.5.1 readpfc syntax
	5.1.5.2 Header Section
	5.1.5.3 Point to Point Communications Section
	5.1.5.4 Collective Section
	5.1.5.5 Call table section
	5.1.5.6 Histograms Section
	5.1.5.7 Statistics Section
	5.1.5.8 Topology Section

	5.1.6 Profilecomm Data Display Options
	5.1.7  Exporting a Matrix or an Histogram
	5.1.7.1 Options
	5.1.7.2 pfcplot, histplot and gnuplot


	5.2 Scalasca
	5.2.1 Scalasca Overview
	5.2.2 Scalasca Usage
	5.2.3 More Information

	5.3 xPMPI
	5.3.1 Supported tools
	5.3.2 xPMPI Configuration
	5.3.3 xPMPI Usage


	Chapter 6. Analyzing Application Performance
	6.1 PAPI
	6.1.1 High-level PAPI Interface
	6.1.2 Low-level PAPI Interface
	6.1.3 Collecting FLOP Counts on Sandy Bridge Processors

	6.2 Bull Performance Monitor (bpmon)
	6.2.1 bpmon Reporting Mode
	6.2.1.1 Processor Performance Reporting
	6.2.1.2 Memory Usage Reporting

	6.2.2 BPMON PAPI CPU Performance Events
	6.2.3 BPMON with the Bull Coherent Switch

	6.3 Open|SpeedShop
	6.3.1 Open|SpeedShop Overview
	6.3.2 Open|SpeedShop Usage
	6.3.3 More Information

	6.4 HPCToolkit
	6.4.1 HPCToolkit Workflow
	6.4.2 HPCToolkit Tools
	6.4.2.1 hpcrun
	6.4.2.2 hpcstruct
	6.4.2.3 hpcprof
	6.4.2.4 hpcviewer
	6.4.2.5 Display Counters

	6.4.3 More information about HPCToolkit

	6.5 Bull-Enhanced HPCToolkit
	6.5.1 History Component
	6.5.1.1 History Repository
	6.5.1.2 History Repository Environment Variables
	6.5.1.3 Passport Library
	6.5.1.4 Passport Manager Application

	6.5.2 Viewing Component
	6.5.3 HPCToolkit Wrappers
	6.5.3.1 Start Component: bhpcstart
	6.5.3.2 Stop Component: bhpcstop
	6.5.3.3 Clean Component: bhpcclean
	6.5.3.4 Compilation Component: bhpcstruct
	6.5.3.5 Parallel Manager Component: bhpcrun
	6.5.3.6 Hotplot Component: bhpcprof
	6.5.3.7 Hotplot Component: bhpcprof-mpi

	6.5.4 Test Case
	6.5.4.1 Test run work flow

	6.5.5 HPCToolkit Configuration Files
	6.5.5.1 Compilation Component Configuration File: bhpcstruct.conf
	6.5.5.2 Parallel Manager Configuration File: bhpcrun.conf
	6.5.5.3 HOTPLOT Configuration File bhpcprof.conf



	Chapter 7. I/O Profiling
	7.1 Iotop
	7.2 Darshan
	7.2.1 Darshan Usage
	7.2.2 Darshan log files
	7.2.3 Compiling with Darshan
	7.2.4  Analyzing log files with Darshan utilities
	7.2.5 Darshan Limitations


	Chapter 8. Libraries and Other Tools
	8.1 Boost
	8.2 OTF (Open Trace Format)
	8.3 Ptools
	8.3.1 CPUSETs
	8.3.2 CPUSETs management tools


	Appendix A.  Performance Monitoring with BCS Counters
	A.1 Bull Coherent Switch Architecture
	A.2 Performance Monitoring Architecture
	Event Detection
	Event Counting

	A.3  Event Types
	PE Event Types
	NCMH Event Types
	LL and OB Event Types
	RO Event Type

	A.4  Event Counts and Counter Threshold Comparisons
	A.5  Software Application Supported BCS Monitoring Events
	PE Event Setup
	NCMH Event Setup
	LL Event Setup
	RO Event Setup

	A.6 BCS Key Architectural Values
	Message Class and Opcode Mapping
	QPI and XQPI NodeID Maps

	A.7  Configuration Management Description
	Performance Monitor Configuration Registers
	Event Configuration Registers

	A.8  BCS BPMON Usage Examples
	Total Memory Traffic For All BCSs Using Incoming Traffic
	Total Memory Traffic for All BCSs Using Outgoing Traffic
	Memory Traffic For a Source and a Destination BCS Using Incoming Traffic





