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Introduction 
 
To overcome limitations in computing and data analytics related to Earth System science, the 
uptake of artificial intelligence (AI) and machine learning (ML) methodologies is currently 
being explored. Multiple initiatives are now emerging to tackle open challenges such as 
subscale parametrization, detection of patterns and in-situ analysis, adoption of ML for 
alternative process models or dedicated fast prediction systems to address specific end-user 
needs. This also leads to further concerns that need to be addressed with regard to the 
verifiability and reproducibility of results, efficient and effective use of computing and storage 
resources and the necessary practical software environments. 
 
Among these initiatives, the Helmholtz Association initiated the Helmholtz Artificial 
Intelligence Cooperation Unit (HAICU). From the beginning of 2020 on, HAICU will form a 
strong collaboration across multiple disciplines to bring AI into practice. It will develop, 
implement, and disseminate methods of Artificial Intelligence for purposes including the 
analysis of complex systems in the fields of health, energy, transport and earth and environment. 
Specific to Earth sciences, the Helmholtz Digital Earth project has also already paved the 
ground for large-scale data analytics and initiated actions to foster AI adoption. 
 
With Digital Earth, HAICU and other initiatives, there is now an accelerating momentum to 
tackle these challenges with a diverse set of approaches and stakeholders, which opens up a 
rich area of future opportunities for collaboration. This workshop will bring multiple key 
stakeholders together, exchange current experiences, and foster further community actions.  
 
The workshop is planned as a 1.5-day event in Hamburg. The first day will introduce the scope 
and challenges through a series of short talks, while the second day will provide a forum for 
interactive discussion. A poster reception to which all participants are invited to contribute is 
planned for day 1. The goals of the workshop are to assess the state of the art, identify gaps in 
knowledge or services, and build future community collaborations. 
 
 
We welcome you to Hamburg, and look forward to a successful workshop! 
 
 
Corinna Schrum (HZG) 
Tobias Weigel (DKRZ) 
Fabian Reith (GEOMAR) 
Laurens Bouwer (HZG/GERICS) 
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Programme: 
 

Day 1 - February 03, 2020 (Monday) 

08:30-09:00 Registration 

09:00-09:15 Welcome and introduction: 
● Corinna Schrum (HZG) 
● Thomas Ludwig (DKRZ / Universität Hamburg) 

09:15-09:30 Introduction to AI in Earth & Environment (Frederik Tilmann, GFZ) 

09:30-10:30 Session 1: Domain challenges and approaches 
Keynote presentations (30 min. each) 
● Markus Reichstein (MPI-BGC Jena): Linking Machine Learning and 

physical-biological System Modelling 
● Kristian Kersting (TU Darmstadt): The Third Wave of AI: Closing the 

Gap between AI and the Domain Experts (remote) 

10:30-11:00 Coffee break 

11:00-12:30 Session 2: Domain challenges and approaches 
Keynote presentation (30 min.) 
● Jakob Runge (DLR / Universität Jena): Perspectives for causal 

inference on time series in Earth system sciences and beyond 
Short presentations and discussion (15 min. each) 
● Julia Fuchs (KIT): Applications of machine learning techniques to 

satellite observations of the cloud environment 
● Peter Dueben (ECMWF): Deep learning for weather predictions 

12:30-13:30 Lunch break 

13:30-15:00 Session 3: Building bridges between AI and domains 
Keynote presentation (30 min.) 

● David Greenberg (HZG): Fitting Interpretable Scientific Models 
with Machine Learning 

Short presentations and discussion (15 min. each) 
● Christopher Kadow (DKRZ): AI reconstructs missing climate 

information 
● Hanna Meyer (WWU): Machine learning applications in 

environmental remote sensing – Moving from data reproduction to 
spatial prediction 

15:00-15:30 Coffee break 

15:30-17:00 Introduction to interactive part of the workshop (10 min.) 
● How will the breakouts work: Rapporteur and moderator role 
● Open options for future activities 

 
Session 4: Breakout groups 
● Science questions A - e.g., modelling, parametrizations, parameter 

estimation, uncertainty quantification 
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● Technical topics - e.g., GPUs, Python usage, I/O and storage 
 

17:00-17:30 Day 1 wrap-up: 
● Reporting of day 1 breakouts 

17:30-19:30 Poster reception and Dinner 
 

Day 2 - February 04, 2020 (Tuesday) 

08:30-09:30 Session 5: Domain challenges and approaches, uncertainty and 
explainability 
● Welcome and recap of day 1 (5 min.) 
● Short talks (15 min.) 
o Peter Braesicke (KIT): On the Role of Stratospheric Ozone in the 

Interactive Chemistry-Climate System 
o Dim Coumou (VU): Machine Learning in climate science: Finding 

causal connections and improving seasonal forecasts 
o Maria Moreno de Castro (DKRZ): Uncertainty Quantification, 

Machine Learning Interpretability, and Explainable Artificial 
Intelligence 

09:30-09:45 Short break 

09:45-10:45 Session 6: Breakout groups 
● Science questions B – time series analysis, causality, data-

assimilation, statistical prediction 
● AI/ML methodology gaps - e.g., uncertainty, reproducibility 

 

10:45-11:15 Coffee break 

11:15-12:15 Session 7: Breakout groups 
● Software frameworks, services and infrastructures 
● Applications beyond Earth and environment 
● Community building, synergies of existing national initiatives, 

funding opportunities 
 

12:15-13:30 Breakouts day 2 wrap-up 
 
Workshop wrap-up 
● Lessons learned and major outcomes 
● Ideas for a follow-up workshop 
● Overview on other relevant activities: Workshops, trainings, 

networking opportunities 
 

13:30 Lunch and farewell 
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Summary report from the breakout groups 
 
The following is a summary of the discussion that took place during the interactive breakout 
groups at the workshop. The summary contains the main points that appeared to be useful for 
future activities without reflecting necessarily all points of the discussion. We thank all 
participants, moderators and rapporteurs for contributing to these points. 
 
Applying ML to Earth System modelling: 

• The application of ML for parametrizations in Earth system modelling is already a 
major research activity. Performance and/or quality can be improved. 

• The general applicability of the new methods has been confirmed, so now there is 
need for demonstrating benefits in terms of quality and/or performance using common 
performance metrics. 

• Hybrid approaches are highly sought that incorporate physical 
understanding/limitations from models into learning processes. 

• The availability of training data, e.g. labelled cloud formations, may be a practical 
barrier. Data augmentation may introduce new biases. 

• ML may be used for model validation, e.g. for CMIP6 via detection and categorization 
of clouds. 

• There are several methods to infer causality of the patterns and relations found in 
observational data, but these need to be spread and applied more widely.   

 
Community activities and capacity building: 

• There is further need and wish to work together for sharing applications of ML, e.g., 
through small dedicated workshops, but also in larger meetings to discuss methods 
and applications across domains, also beyond Earth System research. 

• Additional Summer Schools are required to share hands-on experience and build 
capacity for ML in the Earth System research domain. 

 
Technology: 

• Technical support needs to include provisioning of Python environments, portation to 
GPUs and larger memory, and portability between HPC centres. 

• The technical foundations for Python are well-developed, also for community interests 
at least in parts (e.g., zarr, basic netCDF/HDF5 integration). But support for netCDF 
data handling by ML libraries is still insufficient, in particular for model grids. 

• Challenges remain in distributed training and execution, such as support for execution 
of distributed Python, and distributed computation/adaptive learning integrated with 
models when running on HPC. 

 
Uncertainty and reproducibility: 

• Metrics accounting for the quality of the predictions must be included when reporting 
machine learning applications. In supervised learning, performance metrics tell us how 
often (classification) or how well (regression) the model matched the right target 
during the training and testing phases. More effort needs to be invested to research on 
metrics for unsupervised learning and how metrics change under data shift or concept 
drift and transfer learning. 

• Research efforts should focus on identifying spurious correlations, decoding bias, and 
ensuring that the relation between inputs and outputs incorporates the underlying 
dynamics governing the system. Uncertainty quantification methods help to draw 
confidence intervals around the predictions and explainability methods help to 
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understand which features the model considered more relevant for drawing the 
predictions. Physic-guided models help to include domain expertise and avoid 
inconsistencies like the break of conservation laws. 

• Increase awareness in the community of researchers to account for different sources of 
uncertainty such as aleatoric or epistemic uncertainty and distinguish them from each 
other. 

• To improve reproducibility, training scripts and training data or trained model need to 
be shared, as well as the seeds used. 
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Abstracts – Talks 
 
Peter Braesicke (KIT): On the Role of Stratospheric Ozone in the Interactive 
Chemistry-Climate System 
 
Stratospheric ozone protects life from hard UV radiation and determines important aspects of 
the thermal structure of the atmosphere. In classic climate simulations, ozone is prescribed as 
a boundary condition. However, we know that the interaction of (stratospheric) ozone, 
radiation and circulation can be central for some aspects of climate change. 
 
Over the years, different groups have constructed models with interactive composition 
(including stratospheric ozone), investigating mechanisms in which ozone changes are central 
to climate change signals that would not be captured when prescribing a climatology. 
However, comprehensive composition simulations can be computationally very expensive. 
Thus, a number of approximations exist to simulate stratospheric ozone in simplified ways. 
Here, we will discuss such approximations and how machine learning can help to provide 
reliable implementations of simplified stratospheric chemistry.  
 
For a certain class of simulations, we conclude that composition(chemistry)-climate models 
(e.g. ICON-ART) are indispensable tools to understand certain aspects of climate change. We 
can meet the challenge of modelling across scales and in-depth validation with highly 
resolved measurement data with new modelling systems that include simplified stratospheric 
ozone. 
 
Dim Coumou (VU): Machine Learning in climate science: Finding causal connections 
and improving seasonal forecasts 
 
Summer, with most biological and agricultural production, is probably the season when future 
changes in extremes will have the most-severe impacts on humanity. Summer extremes are 
particularly devastating when they persist for several days: Many consecutive hot-and-dry 
days causing harvest failure, or stagnating wet extremes causing flooding. Often such 
situations are related to quasi-stationary waves in the Jetstream. Despite this importance, we 
are far from a comprehensive understanding of the physical mechanisms involved in creating 
such quasi-stationary waves, nor how they will change with future warming. 
 
Using machine learning techniques based on causal inference we can understand and quantify 
the drivers and causal pathways that influence jet dynamics. I will present several examples of 
how causal inference techniques can disentangle cause from effect to provide insights into the 
dynamics of the large-scale atmospheric circulation and teleconnections. Understanding the 
physical pathways in atmosphere by quantifying causal links can help improving forecasts on 
seasonal to sub-seasonal timescales including prolonged extremes like heat waves and 
droughts. Some of these data-driven forecasts using machine learning outperform operational 
forecasts based on dynamical models. Ultimately we aim for developing hybrid forecast 
methods to improve early warning of extreme weather events. 
 
Peter Dueben (ECMWF): Deep learning for weather predictions 
 
This talk will discuss different approaches to use deep learning to improve weather and 
climate predictions that are investigated at ECMWF across the workflow of numerical 
weather predictions. The approaches may speed-up simulations, help to improve models, or 
enhance the usefulness of model output in the future. 
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In particular, I will talk about the emulation of model components, downscaling of model 
output, improvements of uncertainty quantification in ensemble predictions, and the use of 
machine learning to learn the equations of motion in atmosphere and ocean. 
 
Julia Fuchs (KIT): Applications of machine learning techniques to satellite observations 
of the cloud environment 
 
Understanding clouds, aerosols, their interactions with the land surface and large-scale 
dynamics is essential for the understanding of our climate system. However, multiple 
covariations within the climate system complicate the identification of e.g. cloud-relevant 
influences and the quantification of the aerosol-cloud relation. 
In our studies we conduct satellite-based analyses of cloud properties and aerosol patterns and 
their sensitivities to their meteorological environment. Our foci include stratocumulus cloud 
properties in the Southeast Atlantic and comparable regions, European fog distribution and 
aerosol patterns over Germany. The effect of multiple geophysical parameters is investigated 
based on ensemble-based machine learning approaches such as Gradient Boosting Regression 
Trees using a combination of satellite and reanalysis data. Comprehensive analyses of these 
climate drivers are performed and lead to an improved knowledge of the interactions of 
clouds and their environment from regional to global scales. 
 
David Greenberg (HZG): Fitting Interpretable Scientific Models with Machine 
Learning 
 
For many important models across the natural sciences, running simulations with known 
parameters is easy but assigning parameters to data is difficult. However, recent work 
combining machine learning with mechanistic modeling shows that neural networks can be 
trained to solve this inverse problem, effectively assigning model parameters based on 
incomplete or noisy observations. By using simulations as training data, this strategy can be 
used to identify parameters even when the simulator has non-differentiable outputs, 
intractable likelihood or millions of hidden internal variables. It can also recover the full 
range of parameter sets consistent with experimental observations, allowing parameter 
uncertainty to be incorporated into predictions of future observations. In applying this 
approach to earth system science, major challenges arise due to the size and complexity of 
models and data, but advances in neural network architectures and density estimation can help 
address them. 
 
Christopher Kadow (DKRZ): AI Reconstructs Missing Climate Information 
 
Nowadays climate change research relies on climate information of the past. Historic climate 
records of temperature observations form global gridded datasets like HadCRUT4, which is 
investigated e.g. in the IPCC reports. However, record combining data-sets are sparse in the 
past. Even today they contain missing values. Here we show that artificial intelligence (AI) 
technology can be applied to reconstruct these missing climate values. We found that recently 
successful image inpainting technologies, using partial convolutions in a CUDA accelerated 
deep neural network, can be trained by 20CR reanalysis and CMIP5 experiments. The derived 
AI networks are capable to independently reconstruct artificially trimmed versions of 20CR 
and CMIP5 in grid space for every given month using the HadCRUT4 missing value mask. 
The evaluation reaches high temporal correlations and low errors for the global mean 
temperature. 
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Lydia Keppler (MPI-Met): A SOM-FFN approach to map monthly dissolved inorganic 
carbon from sparse ship data 
 
I present a 2-step neural network method to obtain a global monthly climatology of dissolved 
inorganic carbon (DIC) in the upper 2000 m of the ocean, based on direct measurements. The 
method first clusters the ocean into regions of similar biogeochemical and physical properties 
using self-organizing maps (SOMs) and then runs a feed-forward network (FFN) in each 
cluster to establish and apply statistical relationships between the global fields of physical and 
biogeo-chemical properties and available DIC measurements from the GLODAPv2.2019 
database. I tested the method using synthetic data from a global hindcast simulation of an 
ocean biogeo-chemistry model, an existing time-mean climatology, and independent time-
series and biogeo-chemical float observations. I found that the surface seasonal cycle of DIC 
in the high northern latitudes of the Pacific Ocean (north of ~30°N) and the eastern equatorial 
Atlantic have the larg-est amplitudes (~30 to >50 μmol kg-1 and ~40 μmol kg-1, 
respectively), while most of the re-maining ocean has a weaker amplitude ranging from 5 to 
20 μmol kg-1. The months with the highest surface DIC concentrations tend to be in spring 
when vertical mixing dominates the sea-sonal maximum. 
 
Kristian Kersting (TU Darmstadt): Making Clever Hans Clever:  Humans Revise 
Learning Machines for Plant Phenotyping 
 
Current machine learning techniques have shown excellent performances in many real-world 
applications such as plant phenotyping. Particularly, deep neural learning has become a 
popular method of choice. Unfortunately, they might be making use of confounding factors 
within datasets to achieve high prediction rates, resulting in not trustworthy decisions. Rather 
than discarding the trained models or the dataset, we show that interactions between the 
learning system and the human user can correct the model. Specifically, we revise the models 
decision process by adding annotated masks during the learning loop and penalize decisions 
made for wrong reasons. In this way the decision strategies of the machine can be improved, 
focusing on relevant features, without considerably dropping predictive performance. 
 
Hanna Meyer (WWU Münster): Machine learning applications in environmental 
remote sensing – Moving from data reproduction to spatial prediction 
 
Machine learning finds frequent application for spatial predictions of environmental variables. 
In a typical prediction task, remote sensing data are related to observations of an ecological 
target variable to model its spatial distribution. However, the characteristics of spatial data, 
especially spatial autocorrelation, are widely ignored in machine learning applications in 
remote sensing.  
 
We hypothesize that this is problematic and results in models that can reproduce training data 
but are unable to make spatial predictions beyond the locations of the training samples. We 
assume that against the opinion that machine learning algorithms are robust to uninformative 
predictors, spatial dependencies can lead to considerable misinterpretations by the algorithm. 
We suggest that predictors need to be tested for their spatial contribution in the model and 
misleading variables need to be excluded. 
 
We use two case studies aiming at predictions of land cover as well as leaf area index. As 
predictors we use remote sensing data (aerial images, Sentinel-2) but we also present terrain-
related and geolocation variables to the models which feature high spatial autocorrelations. 
Random Forest, as one of the most frequently applied algorithms in environmental remote 
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sensing, is used to train models and we compare how spatial variable selection affects the 
predictions and the estimated model performance. 
 
Our findings confirm that spatial cross-validation is essential in preventing overoptimistic 
model performance estimates. We further show that highly autocorrelated predictors can lead 
to considerable overfitting and result in models that can reproduce the training data but fail in 
making spatial predictions. The problem becomes apparent in the visual assessment of the 
spatial predictions that show clear artefacts that can be traced back to a misinterpretation of 
the spatially autocorrelated predictors by the algorithm. The proposed spatial variable 
selection could automatically detect and remove such variables that lead to overfitting, 
resulting in reliable spatial prediction patterns and improved statistical spatial model 
performance. 
 
We finally conclude that spatial machine learning applications require that spatial 
characteristics are taken into account to produce reliable models that can advance our 
knowledge in environmental science. 
 
Maria Moreno de Castro (DKRZ): Uncertainty Quantification, Machine Learning 
Interpretability, and Explainable Artificial Intelligence 
 
State-of-the-art machine learning and deep learning algorithms are developed to always 
predict an output (even if the input has nothing to do with the training set) and have originally 
been designed for interpolation rather than extrapolation. Moreover, with the increase of data 
volume and model complexity, their predictions can be very accurate but prone to rely on 
spurious correlations, encode and magnify bias, and draw conclusions that do not incorporate 
the underlying dynamics governing the system. Because of that, the uncertainty of the 
predictions and our confidence in the model are difficult to estimate and the relation between 
inputs and outputs becomes hard to interpret. 
 
While many promising proof-of-concept examples are being developed in Earth System 
modelling, little attention has been paid to uncertainty quantification (UQ), machine learning 
interpretability (MLI), and explainable artificial intelligence (XAI). In fact, most of machine 
learning and deep learning applications aim to optimize performance metrics (for instance 
accuracy, which stands for the times the model prediction was right), which are rarely good 
indicators of trust (that is, why these predictions were right?). 
 
We will explain the intuition behind the most popular techniques of UQ, MLI, and XAI: (1) 
the Permutation Importance and Gaussian processes to explore the input space, (2) the Monte-
Carlo Dropout, Deep ensembles, Quantile Regression, and Gaussian processes to explore the 
model space, (3) Conformal Predictors to provide a confidence interval on the outputs, (4) the 
Layerwise Relevance Propagation (LRP), Shapley values, and Local Interpretable Model-
Agnostic Explanations (LIME) to visualize what data were relevant for a particular 
prediction, and (5) some best-practices, like the detection of anomalies in the training data 
before the training, the implementation of fallbacks when the prediction is not reliable, and 
physics-guided learning by including constraints in the loss or reward function to avoid 
inconsistencies, like the violation of conservation laws. 
 
  



                

 

 10 

Abstracts – Posters 
 
Julianna Carvalho Oliviera (HZG): Neural interpretation of European summer climate 
ensemble predictions 
 
Predicting European summer climate is a complex problem, and current state-of-the-art 
dynamical seasonal prediction systems still show very limited skill. To overcome this 
problem, we propose a neural network-based classification of individual ensemble members 
at the initialisation of summer climate predictions with MPI-ESM-MR, prior to performing a 
skill analysis. Different from European winter climate, largely dominated by the North 
Atlantic Oscillation, predictability of European summer climate has been associated with 
several physical mechanisms, including teleconnections with the tropics. Recent studies have 
shown that forecast skill improves when the dominant physical processes in a given season 
are identified at the initialisation of a prediction. Each of these dominant physical process is 
associated with large-scale circulation patterns, often depicted by modes of Empirical 
Orthogonal Functions (EOF). We argue that Self-Organising Maps (SOM) can provide further 
insight on interpreting the forecast skill of MPI-ESM-MR, by identifying which circulation 
patterns lead to more predictable states than others. We first perform a SOM analysis on sea 
level pressure fields of ERA-20C reanalysis for the summer season (June to August) covering 
the period of 1900-2010. We identify 25 large-scale circulation regimes, further reduced to 4 
main classes after performing Hierarchical Agglomerative Clustering. We compare the SOM-
derived modes with variability modes derived from traditional analyses, and perform a 
composite analysis on surface air temperature and precipitation, in order to characterise each 
class of circulation regime. This analysis is then used to distinguish different classes of 
forecasts with two different sets of MPI-ESM-MR initialised simulations with 10 and 30 
members, covering the period of 1902-2008 and 1982-2016, respectively. We then discuss the 
differences and advantages of performing a neural interpretation of the skill of an ensemble 
forecast, over traditional skill analysis. 
 
Tobias Finn (University of Hamburg): Inferring the unknown: Unifying statistical pre- 
and post-processing in meteorology with amortized variational inference 
 
Three problems, one latent state, which we want to infer, but three different solution. That is 
the usual case in meteorology. Observations are processed with their own pipeline, and used 
by data assimilation. But how to incorporate these observations into a statistical post-
processing pipeline, like model output statistics? One could argue that this unsolved problem 
hinders the evolution of numerical weather prediction. Here, I propose a unified framework 
for seamless inference, going from observations, over data assimilation to model output 
statistics. This unified framework is based on recent advances in statistical methods 
(variational inference) and deep neural networks. I cast the three different problems into a 
variational inference problem, where we want to get an unknown latent state based on 
perturbed observational representations. To solve this variational inference problem, we have 
only to construct a decoder, also called observation operator, and a prior for the latent state. It 
is often much easier to construct these two ingredients than solving the inference problem. 
These two ingredients are then used to train deep neural networks in a fully unsupervised 
framework called amortized variational inference. I show that this procedure can be used for 
observational data cleaning (weather radar processing), but it can be also used for fully 
bayesian and gridded model output statistics (statistical post-processing). In my last example, 
I demonstrate how this framework can be combined with Generative Adversarial Networks 
for implicit and non-linear data assimilation. These examples show that it is possible to use 
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recent developments in unsupervised deep learning to solve long-standing problems in 
meteorology. 
 
Sarah Hallerberg (HAW Hamburg): Predictability of Critical Transitions and 
Perturbation Growth 
 
Critical transitions occur in a variety of dynamical systems. Here we employ quantifiers of 
chaos to identify changes in the dynamical structure of complex systems preceding critical 
transitions. As suitable indicator variables for critical transitions, we consider changes in 
growth rates and directions of covariant Lyapunov vectors. Studying critical transitions in 
several models of fast-slow systems, i.e., a network of coupled FitzHugh-Nagumo 
oscillators, models for Josephson junctions, and the Hindmarsh-Rose model, we find that 
tangencies between covariant Lyapunov vectors are a common and maybe generic feature 
during critical transitions. We further demonstrate that this deviation from hyperbolic 
dynamics is linked to the occurrence of critical transitions by using it as an indicator variable 
and evaluating the prediction success through receiver operating characteristic 
curves. In the presence of noise, we find the alignment of covariant Lyapunov vectors and 
changes in finite-time Lyapunov exponents to be more successful in announcing critical 
transitions than common indicator variables as, e.g., finite-time estimates of the variance. 
Additionally, we propose a new method for estimating approximations of covariant Lyapunov 
vectors without knowledge of the future trajectory of the system. We find that these 
approximated covariant Lyapunov vectors can also be applied to predict critical transitions. 
 
Marcel Nonnenmacher (HZG): Machine Learning Tools for fitting Interpretable 
Models to Data 
 
Scientific models incorporate concepts, hypotheses and established knowledge, while their 
free parameters represent knowledge gaps and can be adjusted to match data. Compared to the 
purely statistical "black-box" models commonly used in machine learning, scientific models 
offer much higher interpretability and require fewer parameters. On the flipside, inferring free 
parameters from data is typically much more challenging for scientific models because they 
seldomly allow tractable likelihoods. 
 
Likelihood-free methods allow approximate Bayesian inference for any model that can be 
repeatedly simulated, without relying on internal details of the model or its implementation. 
With this, we can also for complex scientific models study the full space of free parameters 
consistent with given observations. As we demonstrate on several application, likelihood-free 
methods based on deep learning can infer parameters from hand-selected data features, or 
automatically learn informative features from high-dimensional observations. These methods 
have a strong potential to facilitate and improve parameter tuning for earth system models. 
 
Timm Schöning (GEOMAR): Marine Image Analysis 
 
Optical imaging is a common technique in ocean research. Diving robots, towed cameras, 
drop cameras and TV-guided sampling gear: all produce image data of the underwater 
environment. Technological advances like 4K cameras, autonomous robots, high-capacity 
batteries and LED lighting now allow systematic optical monitoring at large spatial scale and 
shorter time but with increased data volume and velocity. Volume and velocity are further 
increased by growing fleets and emerging swarms of autonomous vehicles creating big data 
sets in parallel. This generates a need for automated data processing to harvest maximum 
information. Systematic data analysis benefits from calibrated, georeferenced data with clear 
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metadata description, particularly for machine vision and machine learning. This presentation 
will focus on data workflows, at-sea high-performance computing and unsolved challenges in 
automated understanding of marine imagery. 
 
Hui Tang (GFZ): Deriving discharge thresholds for runoff-generated debris flow using 
process-based models and machine learning methods 
 
Debris flows threaten life and infrastructure in areas close to steep mountain fronts. Currently 
employed rainfall intensity-duration (ID) thresholds are empirical and developed with 
historical data, and therefore most applicable to those settings where debris flows have been 
recorded in the past. We propose a method that combines process-based numerical models 
and machine learning to derive critical values of dimensionless discharge for runoff-generated 
debris flows in a variety of settings. By using a support vector machine method, we train 
logistic regression functions using a combination of monitoring data and hydrologic 
modelling of debris flows. Our training dataset includes post-wildfire debris flows in the Fish 
Fire, California, USA, the Pinal Fire, Arizona, USA, the Buzzard Fire, New Mexico, USA, 
runoff-generated debris flows in Chalk Cliffs, Colorado, USA, and runoff events in the 
Venetian Dolomites, Italy. Our proposed approach is based on a slope-dependent 
dimensionless discharge threshold that can be used to estimate rainfall ID thresholds in areas 
with no historical data on runoff-generated debris flow occurrence. This results in a 
dimensionless discharge threshold that is consistent with previously derived discharge 
thresholds for post-fire debris flows in southern California. 
 
Convolutional event embeddings for fast probabilistic earthquake assessment 
Jannes Münchmeyer, Dino Bindi, Ulf Leser, Frederik Tilmann 
 
Timely and accurate earthquake source parameter estimates are essential for early warning. 
Classical parametric models suffer from simplified assumptions and discard information. We 
use a deep learning model directly on the waveforms to alleviate these issues. A key idea of 
our model is to represent events as vectors that are independent of the specific set of 
contributing stations and the time. We call these representations event embeddings. We 
compare our model to a Bayesian peak displacement baseline on two catalogs from Japan and 
Chile. On both catalogs our model achieves a higher precision 2 s after the first P arrival than 
the baseline after 8 s. After 8 s our model has a 50% lower RMSE. 
 
Andrey Vlasenko (HZG): Ability of Neural Network in reproducing Chemical 
Transport Model Estimates based on meteorological data.  
 
The presence of volatile chemicals in the atmosphere affects air quality and, as a consequence 
the health of the population. As a result, there is a need for robust air quality simulations and 
future scenarios to investigate the effects of emission reduction measures. Due to high 
computational costs, the prediction of concentrations of chemical substances using discretized 
atmospheric chemistry transport models (CTM) remains a big challenge. Neural network 
(NN) is an alternative to cumbersome numerical estimates since it can approximate any 
limited continuous function (i.e., concentration time series) with reasonable accuracy 
requiring much less computational resources.  Thus, the NN trained on the CTM estimates 
should be able to forecast concentrations of chemical substances similar to CTM. We test the 
ability of a NN to reproduce CTM concentration estimates with the example of daily mean 
summer NO2 and SO2 concentrations.  In these tests check how accurate NN reproduces the 
CTM estimates and what is the corresponding gain in saving of the computational resources.  
Note that after a spin-up time, CTM estimates are independent of the initial conditions. We 
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show that similar spin-up time exists in NN, which allows it and predict atmospheric chemical 
state without having input concentration data.   
 
Kathrin Wahle (HZG): Feed-forward backpropagation Neural Network 
 
Feed-forward backpropagation Neural Networks can be applied to a broad range of problems 
occuring in Earth system science, such as data analysis, module (function) emulation and data 
assimilation. We will give an overview of our previous results in these fields. 
 
Jan Walda (University of Hamburg): Unsupervised seismic attribute interpretation 
using deep learning 
 
Machine learning, in particular deep learning, has become a vital factor in pattern recognition 
and repetitive tasks, outperforming humans regularly. Seismic interpretation is often 
associated with finding specific patterns of interest and can depend on the interpreters 
involved. We aim to provide consistent automatic interpretation of seismic data, that assist 
interpreters. In order to do so, we combine deep learning with traditional machine learning 
techniques for automatic interpretation of seismic attributes using 3D data seismic field data. 
A major difficulty of seismic interpretation is the way of dealing with the richness of seismic 
attributes (up to hundreds), which results in a multidimensional problem. Usually, the amount 
of seismic attributes is reduced, e.g. by principle component analysis, before interpretation. In 
order to analyze the most important spatial information from two sets of attributes containing 
six attributes each, we use a 3D convolutional autoencoder. The autoencoder aims to find a 
reduced representation of the data. To verify, whether the found representation is reasonable, 
we reconstruct the original data and evaluate the misfit of reconstructed and original data. 
Once the misfit is sufficiently small, we cluster the reduced representation (encoding) to 
obtain a feature cube that contains a label for each sample. This process reduces the 
multidimensional information of multiple seismic attributes and their spatial distribution to 
one label for each sample in the 3D spatial volume. The found labels can be interpreted 
instead of the numerous seismic attributes, which eases and accelerates interpretation and 
reduces cost. Furthermore, human interpreters might overlook features of interest, such as 
faults, salt or horizons in the seismic attributes, which can be revealed by our unsupervised 
deep learning approach. 
 
Eduardo Zorita (HZG): Application of Machine Learning methods for reconstructions 
of past climate 
 
Reconstructions of past climates are based on proxy indicators, such as tree-rings or lake 
sediments, that contain information about past environmental conditions, but that also are 
influenced by other non-climatic factors. The extraction of the climate signal is achieved so 
far by statistically calibrating there proxy records against available observations. Machine 
Learning methods are beginning to be applied for climate reconstructions, but it is not yet 
clear if they can outperform the classical statistical methods. We will present here a few 
applications. 
 
One application is focused on the reconstructions of the sea-surface-temperatures in the North 
Atlantic over the past millennium from the information contained in terrestrial proxies located 
along the Atlantic coasts.  The applied method is Gaussian Process Regression. Traditionally, 
these type of reconstructions have been performed with ordinary linear regression, possibly 
after a pre-filtering by Principal Components Analysis. This approach leads to the 
underestimation of past variability. A straightforward application of Gaussian Process 
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Regression also suffers from this deficiency. However, a rearranging of the predictors and 
predictand phase space can substantially ameliorate this problem. 
 
The second example is focused on the reconstruction of the atmospheric circulation over the 
past centuries based on precipitation sensitive proxies. The method here is the k-nearest 
neighbour, Spatial patterns of reconstructed precipitation are compared with those simulated 
in long climate simulations, selecting thereby the most similar. The simulated atmospheric 
circulation in those most similar instances is then identified as the reconstructed atmospheric 
circulation. This method can be further refined by a subsequent correction using a Kalman 
Filter, to reduce existing biases and standard deviation of the estimation. 
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